Usman A Tahir, Daniel Reichart, Anisha Purohit, Jacob L Barber, Gaurav Tiwari, Laurie Farrell, Julia Marine, Darius Roy, Joshen Patel, Catherine Ireland, Carolyn Y Ho, Christine E Seidman, Robert E Gerszten, Neal K Lakdawala
{"title":"Plasma Proteomics Reveals Dysregulated Pathways Across the Spectrum <i>LMNA</i> Cardiomyopathy.","authors":"Usman A Tahir, Daniel Reichart, Anisha Purohit, Jacob L Barber, Gaurav Tiwari, Laurie Farrell, Julia Marine, Darius Roy, Joshen Patel, Catherine Ireland, Carolyn Y Ho, Christine E Seidman, Robert E Gerszten, Neal K Lakdawala","doi":"10.1161/CIRCGEN.124.004924","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pathogenic variants in the <i>lamin A/C</i> (<i>LMNA</i>) gene cause an aggressive form of dilated cardiomyopathy (DCM), marked by higher rates of advanced conduction disease, malignant ventricular tachyarrhythmias, and advanced heart failure compared with other causes of nonischemic cardiomyopathy. However, the mechanisms that drive the development and progression of <i>LMNA</i> DCM are incompletely understood.</p><p><strong>Methods: </strong>To identify proteins and biological pathways associated with likely pathogenic/pathogenic <i>LMNA</i> variants, we measured ≈3000 plasma proteins using the OLINK platform in a genetic DCM cohort consisting of <i>LMNA</i> (n=41) and sarcomeric (n=18) DCM, along with phenotype-negative individuals from family-based cascade screening (n=55) with (<i>LMNA</i>, n=16; sarcomere, n=12) or without the family variant (genotype negative, n=27).</p><p><strong>Results: </strong>We identified several novel proteins associated with <i>LMNA</i> DCM compared with sarcomeric DCM, including EDA2R (ectodysplasin A2 receptor; per log2 fold change in relative protein abundance, β=3.0; <i>P</i>=4×10<sup>-</sup>³) and <i>MYL4</i> (myosin light chain 4; β=2.32; <i>P</i>=5×10<sup>-</sup>³). Among the proteins associated with <i>LMNA</i> DCM, 26 showed concordant differential gene expression from single-cell sequencing in cardiomyocytes from myocardial biopsies in advanced <i>LMNA</i> heart failure compared with control hearts (false discovery rate, <5%). We performed principal component analyses on these 26 proteins to identify proteomic signatures of <i>LMNA</i> DCM and found the first principal component to be associated with left ventricular ejection fraction and complete heart block in the <i>LMNA</i> DCM cohort. Six proteins-EDA2R, MYL4, CRIM1 (cysteine-rich transmembrane BMP regulator 1), TPR (translocated promoter region), FSTL3 (follistatin-like 3), and NFYA (nuclear transcription factor Y)-were associated with <i>LMNA</i> pathogenic variants across phenotype-negative individuals, DCM, and their respective cardiomyocyte RNA expression profiles in advanced heart failure.</p><p><strong>Conclusions: </strong>Proteomic profiling in individuals with likely pathogenic/pathogenic <i>LMNA</i> variants illuminated integral pathways across the spectrum of <i>LMNA</i> DCM. These findings may help advance genotype-driven biomarker discovery and tailored therapeutic development in <i>LMNA</i> DCM.</p>","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004924"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Genomic and Precision Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCGEN.124.004924","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Pathogenic variants in the lamin A/C (LMNA) gene cause an aggressive form of dilated cardiomyopathy (DCM), marked by higher rates of advanced conduction disease, malignant ventricular tachyarrhythmias, and advanced heart failure compared with other causes of nonischemic cardiomyopathy. However, the mechanisms that drive the development and progression of LMNA DCM are incompletely understood.
Methods: To identify proteins and biological pathways associated with likely pathogenic/pathogenic LMNA variants, we measured ≈3000 plasma proteins using the OLINK platform in a genetic DCM cohort consisting of LMNA (n=41) and sarcomeric (n=18) DCM, along with phenotype-negative individuals from family-based cascade screening (n=55) with (LMNA, n=16; sarcomere, n=12) or without the family variant (genotype negative, n=27).
Results: We identified several novel proteins associated with LMNA DCM compared with sarcomeric DCM, including EDA2R (ectodysplasin A2 receptor; per log2 fold change in relative protein abundance, β=3.0; P=4×10-³) and MYL4 (myosin light chain 4; β=2.32; P=5×10-³). Among the proteins associated with LMNA DCM, 26 showed concordant differential gene expression from single-cell sequencing in cardiomyocytes from myocardial biopsies in advanced LMNA heart failure compared with control hearts (false discovery rate, <5%). We performed principal component analyses on these 26 proteins to identify proteomic signatures of LMNA DCM and found the first principal component to be associated with left ventricular ejection fraction and complete heart block in the LMNA DCM cohort. Six proteins-EDA2R, MYL4, CRIM1 (cysteine-rich transmembrane BMP regulator 1), TPR (translocated promoter region), FSTL3 (follistatin-like 3), and NFYA (nuclear transcription factor Y)-were associated with LMNA pathogenic variants across phenotype-negative individuals, DCM, and their respective cardiomyocyte RNA expression profiles in advanced heart failure.
Conclusions: Proteomic profiling in individuals with likely pathogenic/pathogenic LMNA variants illuminated integral pathways across the spectrum of LMNA DCM. These findings may help advance genotype-driven biomarker discovery and tailored therapeutic development in LMNA DCM.
期刊介绍:
Circulation: Genomic and Precision Medicine is a distinguished journal dedicated to advancing the frontiers of cardiovascular genomics and precision medicine. It publishes a diverse array of original research articles that delve into the genetic and molecular underpinnings of cardiovascular diseases. The journal's scope is broad, encompassing studies from human subjects to laboratory models, and from in vitro experiments to computational simulations.
Circulation: Genomic and Precision Medicine is committed to publishing studies that have direct relevance to human cardiovascular biology and disease, with the ultimate goal of improving patient care and outcomes. The journal serves as a platform for researchers to share their groundbreaking work, fostering collaboration and innovation in the field of cardiovascular genomics and precision medicine.