Coherent electron transport in poly(p-phenylene).

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yukihito Matsuura
{"title":"Coherent electron transport in poly(p-phenylene).","authors":"Yukihito Matsuura","doi":"10.1007/s00894-025-06413-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Conductive polymers like poly(p-phenylene) (PPP) exhibit polarons and bipolarons (radical cations/dications) in bulk. While individual π-conjugated molecules are generally conductive, the role of these charged states in single-molecule junctions, where deviations from bulk behavior are suggested, remains unclear. This study employs first-principles calculations to examine the relationship between charge state (neutral, radical cation, dication) and conductance in single oligo(p-phenylene) junctions. My results demonstrate significant conductance enhancement upon doping, yet reveal that the single-molecule charge transport mechanism deviates substantially from bulk expectations, highlighting differences between molecular and bulk electronic properties.</p><p><strong>Methods: </strong>Geometry optimizations for mercapto-terminated octa(p-phenylene) (neutral, radical cation, and dication states) used Density Functional Theory (B3LYP functional, 6-31G(d,p) basis set, RHF/ROHF methods) via Gaussian 16. Coherent electron transport calculations for molecules bridging Au(111) electrodes employed the Non-Equilibrium Green's Function (NEGF)-DFT method with QuantumATK. These transport calculations utilized norm-conserving Troullier-Martin pseudopotentials, double-zeta plus polarization (DZP) basis sets for C, H, S, single-zeta plus polarization (SZP) for Au, and the Perdew-Burke-Ernzerhof (PBE) functional with the spin-polarized Generalized Gradient Approximation (SGGA).</p>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 7","pages":"187"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00894-025-06413-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context: Conductive polymers like poly(p-phenylene) (PPP) exhibit polarons and bipolarons (radical cations/dications) in bulk. While individual π-conjugated molecules are generally conductive, the role of these charged states in single-molecule junctions, where deviations from bulk behavior are suggested, remains unclear. This study employs first-principles calculations to examine the relationship between charge state (neutral, radical cation, dication) and conductance in single oligo(p-phenylene) junctions. My results demonstrate significant conductance enhancement upon doping, yet reveal that the single-molecule charge transport mechanism deviates substantially from bulk expectations, highlighting differences between molecular and bulk electronic properties.

Methods: Geometry optimizations for mercapto-terminated octa(p-phenylene) (neutral, radical cation, and dication states) used Density Functional Theory (B3LYP functional, 6-31G(d,p) basis set, RHF/ROHF methods) via Gaussian 16. Coherent electron transport calculations for molecules bridging Au(111) electrodes employed the Non-Equilibrium Green's Function (NEGF)-DFT method with QuantumATK. These transport calculations utilized norm-conserving Troullier-Martin pseudopotentials, double-zeta plus polarization (DZP) basis sets for C, H, S, single-zeta plus polarization (SZP) for Au, and the Perdew-Burke-Ernzerhof (PBE) functional with the spin-polarized Generalized Gradient Approximation (SGGA).

聚对苯中的相干电子输运。
背景:像聚(对苯)(PPP)这样的导电聚合物大量表现出极化子和双极化子(自由基阳离子/指示)。虽然单个π共轭分子通常是导电的,但这些带电状态在单分子连接处的作用仍不清楚。本研究采用第一性原理计算来检验单寡聚(对苯)结中电荷状态(中性、自由基阳离子、阳离子化)和电导率之间的关系。我的研究结果表明,掺杂后电导显著增强,但揭示了单分子电荷输运机制与体积预期有很大差异,突出了分子和体电子性质之间的差异。方法:采用密度泛函理论(B3LYP泛函,6-31G(d,p)基集,RHF/ROHF方法),通过高斯16对巯基端对苯八元(中性、自由基阳离子和阳离子态)进行几何优化。采用非平衡格林函数(NEGF)-DFT方法计算桥接Au(111)电极分子的相干电子传递。这些输运计算使用了规范守恒的Troullier-Martin伪势,C、H、S的双zeta +极化(DZP)基集,Au的单zeta +极化(SZP)基集,以及具有自旋极化广义梯度近似(SGGA)的Perdew-Burke-Ernzerhof (PBE)泛函。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信