Shaowei Wang, Xianghong Fu, Xiya Ren, Peng Yi, Zhigang Wu*, Ren-shan Ge* and Bo Peng*,
{"title":"Halogen Atoms in Bisphenol A Derivatives Enhance the Inhibitory Potency against Human and Rat Placental 3β-Hydroxysteroid Dehydrogenases","authors":"Shaowei Wang, Xianghong Fu, Xiya Ren, Peng Yi, Zhigang Wu*, Ren-shan Ge* and Bo Peng*, ","doi":"10.1021/acs.chemrestox.5c00156","DOIUrl":null,"url":null,"abstract":"<p >Halogenated bisphenol A (BPA) derivatives are extensively utilized in industrial production and have been detected in the environment, as well as in human samples. The 3β-HSDs are important for the catalytic transformation of pregnenolone into progesterone. But inhibition by BPA derivatives on 3β-HSD activity is still unclear. The inhibition of 3β-HSD by 8 halogen BPA derivatives was assessed by means of an in vitro test. Tetrachloro BPA was found to be the strongest 3β-HSDs in both human and rat models with IC<sub>50</sub> values of 1.48 and 3.81 μM. Other derivatives, including 3-chloro BPA, bisphenol C, 3,3’,5-trichloro BPA, tetrabromo BPA, and 4,4’-thiodiphenol, also exhibited inhibitory effects on human and rat placental 3β-HSD activity, albeit with lower potency. 3-Chloro BPA and bisphenol C exerted mixed inhibition against human 3β-HSD1, while the others functioned as competitive inhibitors. These compounds significantly suppressed progesterone secretion in human JAr cells. The inhibitory effects were inversely correlated with the Log P (lipophilicity) and halogen atoms. Docking analysis showed hydrophobic and hydrogen bond interactions that played key roles in the inhibition mechanism. In this paper, a new pharmacological model, which includes both hydrophobic and aromatics, has been proposed for the prediction of inhibition of BPA derivatives. In summary, some halogen-containing derivatives are strong suppressors of 3β-HSDs in placenta, and the inhibition effect of these compounds is mainly dependent on the lipophilicity.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"38 7","pages":"1266–1280"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.5c00156","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Halogenated bisphenol A (BPA) derivatives are extensively utilized in industrial production and have been detected in the environment, as well as in human samples. The 3β-HSDs are important for the catalytic transformation of pregnenolone into progesterone. But inhibition by BPA derivatives on 3β-HSD activity is still unclear. The inhibition of 3β-HSD by 8 halogen BPA derivatives was assessed by means of an in vitro test. Tetrachloro BPA was found to be the strongest 3β-HSDs in both human and rat models with IC50 values of 1.48 and 3.81 μM. Other derivatives, including 3-chloro BPA, bisphenol C, 3,3’,5-trichloro BPA, tetrabromo BPA, and 4,4’-thiodiphenol, also exhibited inhibitory effects on human and rat placental 3β-HSD activity, albeit with lower potency. 3-Chloro BPA and bisphenol C exerted mixed inhibition against human 3β-HSD1, while the others functioned as competitive inhibitors. These compounds significantly suppressed progesterone secretion in human JAr cells. The inhibitory effects were inversely correlated with the Log P (lipophilicity) and halogen atoms. Docking analysis showed hydrophobic and hydrogen bond interactions that played key roles in the inhibition mechanism. In this paper, a new pharmacological model, which includes both hydrophobic and aromatics, has been proposed for the prediction of inhibition of BPA derivatives. In summary, some halogen-containing derivatives are strong suppressors of 3β-HSDs in placenta, and the inhibition effect of these compounds is mainly dependent on the lipophilicity.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.