Quantum-Enhanced Water Quality Monitoring: Exploiting $\Phi$ Sat-2 Data With Quanvolution

Francesco Mauro;Francesca Razzano;Pietro Di Stasio;Alessandro Sebastianelli;Gabriele Meoni;Gilda Schirinzi;Paolo Gamba;Silvia Liberata Ullo
{"title":"Quantum-Enhanced Water Quality Monitoring: Exploiting $\\Phi$ Sat-2 Data With Quanvolution","authors":"Francesco Mauro;Francesca Razzano;Pietro Di Stasio;Alessandro Sebastianelli;Gabriele Meoni;Gilda Schirinzi;Paolo Gamba;Silvia Liberata Ullo","doi":"10.1109/LGRS.2025.3576677","DOIUrl":null,"url":null,"abstract":"Coastal water quality monitoring is crucial for environmental sustainability and public health. This work introduces a very cutting-edge methodology, using <inline-formula> <tex-math>$\\Phi $ </tex-math></inline-formula>Sat-2 multispectral data and quanvolutional neural networks (QNNs) to explore quantum-enhanced machine learning (ML) for water contaminant assessment. By integrating quantum preprocessing into a classical regression model, it is possible to achieve a significant reduction in model parameters while maintaining high predictive accuracy. In addition, this work introduces an innovative dataset that integrates simulated <inline-formula> <tex-math>$\\Phi $ </tex-math></inline-formula>Sat-2 spectral data with Copernicus Marine Service biogeochemical products, ensuring a strong alignment between satellite observations and reference turbidity measurements. Our results show that quantum models use up to 98% fewer parameters than their classical counterparts, while achieving a 6.9% improvement in the Pearson correlation coefficient between the <inline-formula> <tex-math>$\\Phi $ </tex-math></inline-formula>Sat-2 preprocessed bands and the ground-truth turbidity values, compared with the case without quantum preprocessing. In addition, the root mean square error (RMSE) improves by 7.3% over the classical baseline. These findings highlight the potential of quantum-assisted remote sensing (RS) to enable more efficient and scalable analysis of large-scale water contaminant data, paving the way for advanced big data approaches in water quality monitoring.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11023839/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coastal water quality monitoring is crucial for environmental sustainability and public health. This work introduces a very cutting-edge methodology, using $\Phi $ Sat-2 multispectral data and quanvolutional neural networks (QNNs) to explore quantum-enhanced machine learning (ML) for water contaminant assessment. By integrating quantum preprocessing into a classical regression model, it is possible to achieve a significant reduction in model parameters while maintaining high predictive accuracy. In addition, this work introduces an innovative dataset that integrates simulated $\Phi $ Sat-2 spectral data with Copernicus Marine Service biogeochemical products, ensuring a strong alignment between satellite observations and reference turbidity measurements. Our results show that quantum models use up to 98% fewer parameters than their classical counterparts, while achieving a 6.9% improvement in the Pearson correlation coefficient between the $\Phi $ Sat-2 preprocessed bands and the ground-truth turbidity values, compared with the case without quantum preprocessing. In addition, the root mean square error (RMSE) improves by 7.3% over the classical baseline. These findings highlight the potential of quantum-assisted remote sensing (RS) to enable more efficient and scalable analysis of large-scale water contaminant data, paving the way for advanced big data approaches in water quality monitoring.
量子增强水质监测:利用量子演进利用$\Phi$ Sat-2数据
沿海水质监测对环境可持续性和公众健康至关重要。这项工作引入了一种非常前沿的方法,使用$\Phi $ Sat-2多光谱数据和量子神经网络(qnn)来探索用于水污染物评估的量子增强机器学习(ML)。通过将量子预处理集成到经典回归模型中,可以在保持较高预测精度的同时显著减少模型参数。此外,这项工作还引入了一个创新的数据集,该数据集将模拟的$\Phi $ Sat-2光谱数据与哥白尼海洋服务生物地球化学产品相结合,确保了卫星观测和参考浊度测量之间的高度一致性。我们的研究结果表明,与经典模型相比,量子模型使用的参数减少了98%,而与没有进行量子预处理的情况相比,$\Phi $ Sat-2预处理波段与地真浊度值之间的Pearson相关系数提高了6.9%。此外,均方根误差(RMSE)比经典基线提高了7.3%。这些发现突出了量子辅助遥感(RS)的潜力,使大规模水污染物数据的分析更加有效和可扩展,为水质监测中的先进大数据方法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信