Guangjie Liu;Kai Huang;Xiaolan Lv;Yuanhao Sun;Hailong Li;Xiaohui Lei;Quanchun Yuan;Lei Shu
{"title":"Innovations and Refinements in LiDAR Odometry and Mapping: A Comprehensive Review","authors":"Guangjie Liu;Kai Huang;Xiaolan Lv;Yuanhao Sun;Hailong Li;Xiaohui Lei;Quanchun Yuan;Lei Shu","doi":"10.1109/JAS.2025.125198","DOIUrl":null,"url":null,"abstract":"Since its introduction in 2014, the LiDAR odometry and mapping (LOAM) algorithm has become a cornerstone in the fields of autonomous driving and intelligent robotics. LOAM provides robust support for autonomous navigation in complex dynamic environments through precise localization and environmental mapping. This paper offers a comprehensive review of the innovations and optimizations made to the LOAM algorithm, covering advancements in multi-sensor fusion technology, frontend processing optimization, backend optimization, and loop closure detection. These improvements have significantly enhanced LOAM's performance in various scenarios, including urban, agricultural, and underground environments. However, challenges remain in areas such as data synchronization, real-time processing, computational complexity, and environmental adaptability. Looking ahead, future developments are expected to focus on creating more efficient multi-sensor fusion algorithms, expanding application domains, and building more robust systems, thereby driving continued progress in autonomous driving, intelligent robotics, and autonomous unmanned systems.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 6","pages":"1072-1094"},"PeriodicalIF":19.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10938046/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Since its introduction in 2014, the LiDAR odometry and mapping (LOAM) algorithm has become a cornerstone in the fields of autonomous driving and intelligent robotics. LOAM provides robust support for autonomous navigation in complex dynamic environments through precise localization and environmental mapping. This paper offers a comprehensive review of the innovations and optimizations made to the LOAM algorithm, covering advancements in multi-sensor fusion technology, frontend processing optimization, backend optimization, and loop closure detection. These improvements have significantly enhanced LOAM's performance in various scenarios, including urban, agricultural, and underground environments. However, challenges remain in areas such as data synchronization, real-time processing, computational complexity, and environmental adaptability. Looking ahead, future developments are expected to focus on creating more efficient multi-sensor fusion algorithms, expanding application domains, and building more robust systems, thereby driving continued progress in autonomous driving, intelligent robotics, and autonomous unmanned systems.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.