{"title":"CLPM: A Hybrid Network With Cross-Space Learning and Perception-Driven Mechanism for Long-Tailed Remote Sensing Image Classification","authors":"Lei Zhang;Min Kong;Changfeng Jing;Xing Xing","doi":"10.1109/JSTARS.2025.3575292","DOIUrl":null,"url":null,"abstract":"Long-tailed distribution is a common issue in remote sensing image classification (RSIC), and many datasets suffer from severe class imbalance. This imbalance often causes the classifier to focus on the head classes with more samples, neglecting the tail classes. As a result, the precision of the tail classes is reduced, which in turn affects the generalization ability of the classifier. To address this problem, a hybrid network based on cross-space learning and perception-driven mechanism (CLPM) is proposed to improve the classification accuracy of samples from the tail classes. The CLPM network consists of three components. The cross-space representation learning branch is designed to enhance the representation capability of tail-class samples by integrating multiscale and multiregion spatial features. In parallel, the adaptive perception classification branch dynamically adjusts the receptive fields to improve generalization across different resolutions and challenging scenarios. In addition, the CLPM innovatively applies the von Mises-Fisher (vMF) distribution to remote sensing images for high-dimensional interclass feature modeling. Building on this, a vMF-based contrastive loss function is proposed. This approach effectively coordinates the learning processes of head and tail classes while enhancing the precision of feature representation. The effectiveness of CLPM is validated on datasets with varying balance ratios, including SIRI-WHU, CLRS, and NWPU-RESISC45. Results show that CLPM significantly improves tail classes accuracy while maintaining high recognition rates for head and middle classes. Compared with the existing methods, CLPM has significant advantages in the overall recognition accuracy, the long-tailed problem, and diversity adaptation.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"14272-14290"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11018338","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11018338/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Long-tailed distribution is a common issue in remote sensing image classification (RSIC), and many datasets suffer from severe class imbalance. This imbalance often causes the classifier to focus on the head classes with more samples, neglecting the tail classes. As a result, the precision of the tail classes is reduced, which in turn affects the generalization ability of the classifier. To address this problem, a hybrid network based on cross-space learning and perception-driven mechanism (CLPM) is proposed to improve the classification accuracy of samples from the tail classes. The CLPM network consists of three components. The cross-space representation learning branch is designed to enhance the representation capability of tail-class samples by integrating multiscale and multiregion spatial features. In parallel, the adaptive perception classification branch dynamically adjusts the receptive fields to improve generalization across different resolutions and challenging scenarios. In addition, the CLPM innovatively applies the von Mises-Fisher (vMF) distribution to remote sensing images for high-dimensional interclass feature modeling. Building on this, a vMF-based contrastive loss function is proposed. This approach effectively coordinates the learning processes of head and tail classes while enhancing the precision of feature representation. The effectiveness of CLPM is validated on datasets with varying balance ratios, including SIRI-WHU, CLRS, and NWPU-RESISC45. Results show that CLPM significantly improves tail classes accuracy while maintaining high recognition rates for head and middle classes. Compared with the existing methods, CLPM has significant advantages in the overall recognition accuracy, the long-tailed problem, and diversity adaptation.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.