Xiaoling Wang;Qi Kang;MengChu Zhou;Qi Deng;Zheng Fan;Haoyue Liu
{"title":"Knowledge Classification-Assisted Evolutionary Multitasking for Two-Task Multiobjective Optimization Problems","authors":"Xiaoling Wang;Qi Kang;MengChu Zhou;Qi Deng;Zheng Fan;Haoyue Liu","doi":"10.1109/JAS.2024.125070","DOIUrl":null,"url":null,"abstract":"To realize Industry 5.0, manufacturers face various optimization problems that seldom appear in isolation. Evolutionary MultiTasking (EMT) is an effective method to solve multiple related problems by extracting and utilizing common knowledge. Knowledge transfer is the key to the effectiveness of EMT. Existing EMT methods mainly focus on designing effective intertask learning methods and ignore the fact that provided knowledge's appropriateness also has a significant effect on EMT's performance. There is plentiful knowledge in assistant tasks, and knowledge transfer may not work well and even lead to a negative effect if useless knowledge is selected to guide target tasks. EMT is thus confronted with a challenge to find appropriate knowledge. This work proposes an efficient knowledge classification-assisted EMT framework to identify and select valuable knowledge from assistant tasks. During the evolution process, better-performing candidates are supposed to have advantages in exploitation. Therefore, assistant individuals that are similar to better-performing target individuals are used to provide positive knowledge. Specifically, the target sub-population is divided into different levels and then a classifier is trained to divide assistant sub-population. Considering that target and assistant sub-populations have different characteristics, we use domain adaptation to reduce their distribution discrepancies. In this way, the trained classifier can classify assistant individuals more accurately, and truly useful knowledge can be selected for target tasks. The superior performance of our proposed framework over state-of-the-art algorithms is verified via a series of benchmark problems.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 6","pages":"1176-1193"},"PeriodicalIF":19.2000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11036654/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
To realize Industry 5.0, manufacturers face various optimization problems that seldom appear in isolation. Evolutionary MultiTasking (EMT) is an effective method to solve multiple related problems by extracting and utilizing common knowledge. Knowledge transfer is the key to the effectiveness of EMT. Existing EMT methods mainly focus on designing effective intertask learning methods and ignore the fact that provided knowledge's appropriateness also has a significant effect on EMT's performance. There is plentiful knowledge in assistant tasks, and knowledge transfer may not work well and even lead to a negative effect if useless knowledge is selected to guide target tasks. EMT is thus confronted with a challenge to find appropriate knowledge. This work proposes an efficient knowledge classification-assisted EMT framework to identify and select valuable knowledge from assistant tasks. During the evolution process, better-performing candidates are supposed to have advantages in exploitation. Therefore, assistant individuals that are similar to better-performing target individuals are used to provide positive knowledge. Specifically, the target sub-population is divided into different levels and then a classifier is trained to divide assistant sub-population. Considering that target and assistant sub-populations have different characteristics, we use domain adaptation to reduce their distribution discrepancies. In this way, the trained classifier can classify assistant individuals more accurately, and truly useful knowledge can be selected for target tasks. The superior performance of our proposed framework over state-of-the-art algorithms is verified via a series of benchmark problems.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.