{"title":"Large-scale protein clustering in the age of deep learning","authors":"Joana Pereira , Lorenzo Pantolini , Janani Durairaj , Torsten Schwede","doi":"10.1016/j.sbi.2025.103078","DOIUrl":null,"url":null,"abstract":"<div><div>Proteins within a family sharing sequence and structure similarity due to a common evolutionary origin often also share functional similarities. Clustering of proteins therefore offers valuable insights, enabling the transfer of features and annotations from well-studied proteins to less-investigated ones. On a local scale, clustering helps identify patterns within specific protein families. On a larger scale, it provides insights into the entire protein universe, showcasing relationships that may not be immediately apparent. Traditionally, this was done at the sequence level or with the use of experimentally resolved protein structures, but the advent of deep learning in protein bioinformatics has brought new options to the table, increasing the breadth, depth, and diversity of similarity metrics and clustering approaches.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"94 ","pages":"Article 103078"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X2500096X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proteins within a family sharing sequence and structure similarity due to a common evolutionary origin often also share functional similarities. Clustering of proteins therefore offers valuable insights, enabling the transfer of features and annotations from well-studied proteins to less-investigated ones. On a local scale, clustering helps identify patterns within specific protein families. On a larger scale, it provides insights into the entire protein universe, showcasing relationships that may not be immediately apparent. Traditionally, this was done at the sequence level or with the use of experimentally resolved protein structures, but the advent of deep learning in protein bioinformatics has brought new options to the table, increasing the breadth, depth, and diversity of similarity metrics and clustering approaches.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation