{"title":"Effect of convergence angle of Ranque-Hilsch vortex tube on the optimization of thermal separation in compressible swirl flow","authors":"Kannan Shaji , Vinod Narayanan , Abhilash Suryan , Heuy Dong Kim","doi":"10.1016/j.physd.2025.134761","DOIUrl":null,"url":null,"abstract":"<div><div>Ranque-Hilsch vortex tube is a highly efficient fluidic expansion device with thermal separation features. Geometric optimization of the device is necessary for getting the best performance. Current study aims to conduct a validated and comparative analysis of the significance of angle of convergence in a convergent vortex tube compared to a straight tube design. Numerical simulations of the swirl flow field are performed to maximize thermal separation. The result shows a strong correlation between swirl flow intensity distribution and vortex tube convergence angle, suggesting that adjusting the angle can remodel vortex core to improve temperature separation. The occurrence and analysis of the bifurcation point confirm the critical angle of convergence, where optimal temperature separation occurs most effectively and efficiently. Exergy and enthalpy-entropy analyses validate the design features, indicating a reduction in cold exit flow irreversibility when the design features critical convergence angle. Further studies are warranted for a comprehensive optimization of the design.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134761"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002386","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Ranque-Hilsch vortex tube is a highly efficient fluidic expansion device with thermal separation features. Geometric optimization of the device is necessary for getting the best performance. Current study aims to conduct a validated and comparative analysis of the significance of angle of convergence in a convergent vortex tube compared to a straight tube design. Numerical simulations of the swirl flow field are performed to maximize thermal separation. The result shows a strong correlation between swirl flow intensity distribution and vortex tube convergence angle, suggesting that adjusting the angle can remodel vortex core to improve temperature separation. The occurrence and analysis of the bifurcation point confirm the critical angle of convergence, where optimal temperature separation occurs most effectively and efficiently. Exergy and enthalpy-entropy analyses validate the design features, indicating a reduction in cold exit flow irreversibility when the design features critical convergence angle. Further studies are warranted for a comprehensive optimization of the design.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.