Tailoring the edge defects and morphology of g-C3N4 for efficient CO2 conversion to cyclic carbonates

IF 4 2区 化学 Q2 CHEMISTRY, PHYSICAL
Jiale Ni, Zicheng Yang, Binxuan Hong, Yi Feng, Jianfeng Yao
{"title":"Tailoring the edge defects and morphology of g-C3N4 for efficient CO2 conversion to cyclic carbonates","authors":"Jiale Ni,&nbsp;Zicheng Yang,&nbsp;Binxuan Hong,&nbsp;Yi Feng,&nbsp;Jianfeng Yao","doi":"10.1016/j.molstruc.2025.142982","DOIUrl":null,"url":null,"abstract":"<div><div>This research endeavors to optimize the morphology and edge defects of g-C<sub>3</sub>N<sub>4</sub> through straightforward pyrolysis of rationally chosen precursors, with the objective of increasing the CO<sub>2</sub> conversion efficiency. Our findings reveal that employing melamine and urea as precursors yields tubular g-C<sub>3</sub>N<sub>4</sub> (CN tube), featuring an increased surface area and a greater density of edge defects than melamine-derived bulk g-C<sub>3</sub>N<sub>4</sub> and urea-derived layered g-C<sub>3</sub>N<sub>4</sub>. As a result, the obtained CN tube can deliver an impressive yield of 98 % for CO<sub>2</sub> cycloaddition with epichlorohydrin at 12 h under mild conditions of 80 °C and 0.1 MPa CO<sub>2</sub> pressure, significantly outperforming those derived from melamine (53 %) or urea (66 %) alone. This investigation demonstrated the pivotal role of a tubular architecture and enriched edge defects in facilitating the thermally driven CO<sub>2</sub> fixation process to produce cyclic carbonates.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1344 ","pages":"Article 142982"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286025016552","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research endeavors to optimize the morphology and edge defects of g-C3N4 through straightforward pyrolysis of rationally chosen precursors, with the objective of increasing the CO2 conversion efficiency. Our findings reveal that employing melamine and urea as precursors yields tubular g-C3N4 (CN tube), featuring an increased surface area and a greater density of edge defects than melamine-derived bulk g-C3N4 and urea-derived layered g-C3N4. As a result, the obtained CN tube can deliver an impressive yield of 98 % for CO2 cycloaddition with epichlorohydrin at 12 h under mild conditions of 80 °C and 0.1 MPa CO2 pressure, significantly outperforming those derived from melamine (53 %) or urea (66 %) alone. This investigation demonstrated the pivotal role of a tubular architecture and enriched edge defects in facilitating the thermally driven CO2 fixation process to produce cyclic carbonates.
调整g-C3N4的边缘缺陷和形态,以有效地将二氧化碳转化为循环碳酸盐
本研究通过合理选择前驱体的直接热解,优化g-C3N4的形貌和边缘缺陷,以提高CO2转化效率。我们的研究结果表明,采用三聚氰胺和尿素作为前体制备的管状g-C3N4 (CN管)比三聚氰胺衍生的块状g-C3N4和尿素衍生的层状g-C3N4具有更大的表面积和更大的边缘缺陷密度。结果表明,在80°C和0.1 MPa CO2压力的温和条件下,与环氧氯丙烷进行12 h的CO2环加成反应,CN管的收率达到98%,明显优于单独使用三聚氰胺(53%)或尿素(66%)的CN管。该研究证明了管状结构和富集的边缘缺陷在促进热驱动CO2固定过程中产生环状碳酸盐的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Structure
Journal of Molecular Structure 化学-物理化学
CiteScore
7.10
自引率
15.80%
发文量
2384
审稿时长
45 days
期刊介绍: The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including: • Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.) • Chemical intermediates • Molecules in excited states • Biological molecules • Polymers. The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example: • Infrared spectroscopy (mid, far, near) • Raman spectroscopy and non-linear Raman methods (CARS, etc.) • Electronic absorption spectroscopy • Optical rotatory dispersion and circular dichroism • Fluorescence and phosphorescence techniques • Electron spectroscopies (PES, XPS), EXAFS, etc. • Microwave spectroscopy • Electron diffraction • NMR and ESR spectroscopies • Mössbauer spectroscopy • X-ray crystallography • Charge Density Analyses • Computational Studies (supplementing experimental methods) We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信