Dynamic analysis and implementation of a multi-stable Hopfield neural network

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xuxin Li, Min Luo, Bo Zhang, Song Liu
{"title":"Dynamic analysis and implementation of a multi-stable Hopfield neural network","authors":"Xuxin Li,&nbsp;Min Luo,&nbsp;Bo Zhang,&nbsp;Song Liu","doi":"10.1016/j.chaos.2025.116657","DOIUrl":null,"url":null,"abstract":"<div><div>To further investigate the influence of multistability on dynamic memory and information processing in biological neurons, this paper constructs a Hopfield neural network (HNN) model with memristive synaptic weights. The dynamical behaviors are systematically analyzed via bifurcation diagrams, Lyapunov exponent spectra, and phase portraits. The results demonstrate that the HNN not only exhibits bistability through variations in non-memristive initial values but also reveals multistability under altered memristive initial conditions, accompanied by observable transient chaotic phenomena. Furthermore, under appropriate initial conditions, the system generates infinite pairs of coexisting chaotic and periodic attractors with structural similarity and spatial offset, manifesting a symmetric multistability. Experimental validation using FPGA-based hardware implementation confirms the consistency between theoretical analysis and numerical simulations. Additionally, the application of generated chaotic sequences to image encryption is explored through numerical simulations and statistical analyses, demonstrating satisfactory encryption performance.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116657"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925006708","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

To further investigate the influence of multistability on dynamic memory and information processing in biological neurons, this paper constructs a Hopfield neural network (HNN) model with memristive synaptic weights. The dynamical behaviors are systematically analyzed via bifurcation diagrams, Lyapunov exponent spectra, and phase portraits. The results demonstrate that the HNN not only exhibits bistability through variations in non-memristive initial values but also reveals multistability under altered memristive initial conditions, accompanied by observable transient chaotic phenomena. Furthermore, under appropriate initial conditions, the system generates infinite pairs of coexisting chaotic and periodic attractors with structural similarity and spatial offset, manifesting a symmetric multistability. Experimental validation using FPGA-based hardware implementation confirms the consistency between theoretical analysis and numerical simulations. Additionally, the application of generated chaotic sequences to image encryption is explored through numerical simulations and statistical analyses, demonstrating satisfactory encryption performance.
多稳定Hopfield神经网络的动态分析与实现
为了进一步研究多稳定性对生物神经元动态记忆和信息处理的影响,本文构建了具有记忆突触权的Hopfield神经网络模型。通过分岔图、李雅普诺夫指数谱和相图系统地分析了其动力学行为。结果表明,HNN不仅在非记忆初值变化时表现出双稳定性,而且在记忆初值变化时表现出多重稳定性,并伴有可观察到的瞬态混沌现象。此外,在适当的初始条件下,系统产生了无限对具有结构相似性和空间偏移的共存混沌和周期吸引子,表现出对称的多稳定性。基于fpga硬件实现的实验验证证实了理论分析与数值模拟的一致性。此外,通过数值模拟和统计分析,探讨了生成的混沌序列在图像加密中的应用,证明了令人满意的加密性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信