Tao Jiang, Shuqi Cao, Yadong Liu, Zhendong Zhang, Bo Liu, Ruibang Luo, Guohua Wang, Yadong Wang
{"title":"cuteFC: regenotyping structural variants through an accurate and efficient force-calling method","authors":"Tao Jiang, Shuqi Cao, Yadong Liu, Zhendong Zhang, Bo Liu, Ruibang Luo, Guohua Wang, Yadong Wang","doi":"10.1186/s13059-025-03642-2","DOIUrl":null,"url":null,"abstract":"Long-read sequencing technologies have great potential for the comprehensive discovery of structural variations (SVs). However, accurate genotype assignment for SVs remains challenging due to unavoidable sequencing errors, limited coverage, and the complexity of SVs. Herein, we propose cuteFC, which employs self-adaptive clustering along with a multiallele-aware clustering to achieve accurate SV regenotyping through a force-calling approach. cuteFC also applies a Genome Position Scanner algorithm to improve its application efficiency. Benchmarking evaluations demonstrate that cuteFC outperforms state-of-the-art methods with 2–5% higher F1 scores and constructs a higher-quality genomic atlas with minimal computational resources. cuteFC is available at https://github.com/Meltpinkg/cuteFC and https://zenodo.org/records/14671406 .","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"91 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03642-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Long-read sequencing technologies have great potential for the comprehensive discovery of structural variations (SVs). However, accurate genotype assignment for SVs remains challenging due to unavoidable sequencing errors, limited coverage, and the complexity of SVs. Herein, we propose cuteFC, which employs self-adaptive clustering along with a multiallele-aware clustering to achieve accurate SV regenotyping through a force-calling approach. cuteFC also applies a Genome Position Scanner algorithm to improve its application efficiency. Benchmarking evaluations demonstrate that cuteFC outperforms state-of-the-art methods with 2–5% higher F1 scores and constructs a higher-quality genomic atlas with minimal computational resources. cuteFC is available at https://github.com/Meltpinkg/cuteFC and https://zenodo.org/records/14671406 .
长读测序技术在全面发现结构变异(SVs)方面具有巨大的潜力。然而,由于不可避免的测序错误、有限的覆盖范围和sv的复杂性,sv的准确基因型分配仍然具有挑战性。在此,我们提出了cuteFC,它采用自适应聚类和多等位基因感知聚类,通过强制调用方法实现准确的SV基因分型。cuteFC还采用了Genome Position Scanner算法来提高应用效率。基准评估表明,cuteFC比最先进的方法F1得分高出2-5%,并以最少的计算资源构建了更高质量的基因组图谱。cuteFC的网址是https://github.com/Meltpinkg/cuteFC和https://zenodo.org/records/14671406。
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.