Borja Ruiz-Fernández de Córdoba, Karmele Valencia, Connor Welch, Haritz Moreno, Susana Martínez-Canarias, Carolina Zandueta, Eduardo Gómez, Alfonso Calvo, Nerea Otegui, Mirari Echepare, Ignacio Garzón, Daniel Ajona, David Lara-Astiaso, Elisabeth Guruceaga, Laura Guembe, Rubén Pío, Ignacio Melero, Silve Vicent, Fernando Pastor, Rafael Martínez-Monge, Fernando Lecanda
{"title":"Dual ENPP1/ATM depletion blunts DNA damage repair boosting radioimmune efficacy to abrogate triple-negative breast cancer","authors":"Borja Ruiz-Fernández de Córdoba, Karmele Valencia, Connor Welch, Haritz Moreno, Susana Martínez-Canarias, Carolina Zandueta, Eduardo Gómez, Alfonso Calvo, Nerea Otegui, Mirari Echepare, Ignacio Garzón, Daniel Ajona, David Lara-Astiaso, Elisabeth Guruceaga, Laura Guembe, Rubén Pío, Ignacio Melero, Silve Vicent, Fernando Pastor, Rafael Martínez-Monge, Fernando Lecanda","doi":"10.1038/s41392-025-02271-2","DOIUrl":null,"url":null,"abstract":"<p>The ATP-hydrolytic ectoenzyme ENPP1 has been implicated in the metastasis and recurrence in triple-negative breast cancer (TNBC), primarily by contributing to tumor cell survival and treatment resistance. However, the precise mechanisms remain unclear. In a model of local recurrence (LR), circulating tumor cells (CTC) engrafting in the post-resection tumor bed developed a radioresistant phenotype linked to an ENPP1<sup>+</sup>-gene signature which was also identified in TNBC patients, suggesting ENPP1´s role in genome integrity. Blockade of ENPP1 using a permeable ENPP1 inhibitor (AVA-NP-695) reduced radioresistance, mechanistically attributed to decreased homologous recombination (HR) resulting in persistent DNA damage, as evidenced by enhanced tail moment and sustained γH2AX formation. This impaired DNA damage repair (DDR) sensitized tumor cells to ionizing radiation (IR). Notably, several DDR inhibitors (i) (including PARPi and ATMi) showed the highest synergy score in a targeted pharmacological screening. In vivo, dual ENPP1/ATM inhibition heightened radiosensitivity, compromised tumor cell survival and enhanced STING-TBK1 signaling by preventing ENPP1-mediated cGAMP hydrolysis. This resulted in robust innate and long-lasting adaptive antitumor immune memory responses, leading to significant tumor regression. Remarkably, combined treatment post-IR reduced spontaneous metastasis and local recurrence, and induced abscopal effects that impacted distant tumor spread in orthotopic tumor models. Thus, these findings position ENPP1 as a critical link between genome integrity and immunosuppression, offering promising translational opportunities for treating local or distant dissemination in TNBC.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"42 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-025-02271-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ATP-hydrolytic ectoenzyme ENPP1 has been implicated in the metastasis and recurrence in triple-negative breast cancer (TNBC), primarily by contributing to tumor cell survival and treatment resistance. However, the precise mechanisms remain unclear. In a model of local recurrence (LR), circulating tumor cells (CTC) engrafting in the post-resection tumor bed developed a radioresistant phenotype linked to an ENPP1+-gene signature which was also identified in TNBC patients, suggesting ENPP1´s role in genome integrity. Blockade of ENPP1 using a permeable ENPP1 inhibitor (AVA-NP-695) reduced radioresistance, mechanistically attributed to decreased homologous recombination (HR) resulting in persistent DNA damage, as evidenced by enhanced tail moment and sustained γH2AX formation. This impaired DNA damage repair (DDR) sensitized tumor cells to ionizing radiation (IR). Notably, several DDR inhibitors (i) (including PARPi and ATMi) showed the highest synergy score in a targeted pharmacological screening. In vivo, dual ENPP1/ATM inhibition heightened radiosensitivity, compromised tumor cell survival and enhanced STING-TBK1 signaling by preventing ENPP1-mediated cGAMP hydrolysis. This resulted in robust innate and long-lasting adaptive antitumor immune memory responses, leading to significant tumor regression. Remarkably, combined treatment post-IR reduced spontaneous metastasis and local recurrence, and induced abscopal effects that impacted distant tumor spread in orthotopic tumor models. Thus, these findings position ENPP1 as a critical link between genome integrity and immunosuppression, offering promising translational opportunities for treating local or distant dissemination in TNBC.
期刊介绍:
Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy.
Scope: The journal covers research on major human diseases, including, but not limited to:
Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.