Transformer for Multitemporal Hyperspectral Image Unmixing

Hang Li;Qiankun Dong;Xueshuo Xie;Xia Xu;Tao Li;Zhenwei Shi
{"title":"Transformer for Multitemporal Hyperspectral Image Unmixing","authors":"Hang Li;Qiankun Dong;Xueshuo Xie;Xia Xu;Tao Li;Zhenwei Shi","doi":"10.1109/TIP.2025.3577394","DOIUrl":null,"url":null,"abstract":"Multitemporal hyperspectral image unmixing (MTHU) holds significant importance in monitoring and analyzing the dynamic changes of surface. However, compared to single-temporal unmixing, the multitemporal approach demands comprehensive consideration of information across different phases, rendering it a greater challenge. To address this challenge, we propose the Multitemporal Hyperspectral Image Unmixing Transformer (MUFormer), an end-to-end unsupervised deep learning model. To effectively perform multitemporal hyperspectral image unmixing, we introduce two key modules: the Global Awareness Module (GAM) and the Change Enhancement Module (CEM). The GAM computes self-attention across all phases, facilitating global weight allocation. On the other hand, the CEM dynamically learns local temporal changes by capturing differences between adjacent feature maps. The integration of these modules enables the effective capture of multitemporal semantic information related to endmember and abundance changes, significantly improving the performance of multitemporal hyperspectral image unmixing. We conducted experiments on one real dataset and two synthetic datasets, demonstrating that our model significantly enhances the effect of multitemporal hyperspectral image unmixing.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"3790-3804"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11033686/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multitemporal hyperspectral image unmixing (MTHU) holds significant importance in monitoring and analyzing the dynamic changes of surface. However, compared to single-temporal unmixing, the multitemporal approach demands comprehensive consideration of information across different phases, rendering it a greater challenge. To address this challenge, we propose the Multitemporal Hyperspectral Image Unmixing Transformer (MUFormer), an end-to-end unsupervised deep learning model. To effectively perform multitemporal hyperspectral image unmixing, we introduce two key modules: the Global Awareness Module (GAM) and the Change Enhancement Module (CEM). The GAM computes self-attention across all phases, facilitating global weight allocation. On the other hand, the CEM dynamically learns local temporal changes by capturing differences between adjacent feature maps. The integration of these modules enables the effective capture of multitemporal semantic information related to endmember and abundance changes, significantly improving the performance of multitemporal hyperspectral image unmixing. We conducted experiments on one real dataset and two synthetic datasets, demonstrating that our model significantly enhances the effect of multitemporal hyperspectral image unmixing.
多时相高光谱图像解混变压器
多时相高光谱图像解混(MTHU)在监测和分析地表动态变化方面具有重要意义。然而,与单时间解混相比,多时间解混方法需要综合考虑不同阶段的信息,因此具有更大的挑战性。为了解决这一挑战,我们提出了多时相高光谱图像解混变压器(MUFormer),这是一种端到端的无监督深度学习模型。为了有效地进行多时相高光谱图像解混,我们引入了两个关键模块:全局感知模块(GAM)和变化增强模块(CEM)。GAM计算所有阶段的自我关注,促进全局权重分配。另一方面,CEM通过捕获相邻特征映射之间的差异来动态学习局部时间变化。这些模块的集成能够有效捕获与端元和丰度变化相关的多时态语义信息,显著提高多时态高光谱图像解混性能。在一个真实数据集和两个合成数据集上进行了实验,结果表明该模型显著增强了多时相高光谱图像的解混效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信