{"title":"Task Augmentation-Based Meta-Learning Segmentation Method for Retinopathy","authors":"Jingtao Wang;Muhammad Mateen;Dehui Xiang;Weifang Zhu;Fei Shi;Jing Huang;Kai Sun;Jun Dai;Jingcheng Xu;Su Zhang;Xinjian Chen","doi":"10.1109/TPAMI.2025.3579271","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) requires large amounts of labeled data, which is extremely time-consuming and labor-intensive to obtain for medical image segmentation tasks. Meta-learning focuses on developing learning strategies that enable quick adaptation to new tasks with limited labeled data. However, rich-class medical image segmentation datasets for constructing meta-learning multi-tasks are currently unavailable. In addition, data collected from various healthcare sites and devices may present significant distribution differences, potentially degrading model’s performance. In this paper, we propose a task augmentation-based meta-learning method for retinal image segmentation (TAMS) to meet labor-intensive annotation demand. A retinal Lesion Simulation Algorithm (LSA) is proposed to automatically generate multi-class retinal disease datasets with pixel-level segmentation labels, such that meta-learning tasks can be augmented without collecting data from various sources. In addition, a novel simulation function library is designed to control generation process and ensure interpretability. Moreover, a generative simulation network (GSNet) with an improved adversarial training strategy is introduced to maintain high-quality representations of complex retinal diseases. TAMS is evaluated on three different OCT and CFP image datasets, and comprehensive experiments have demonstrated that TAMS achieves superior segmentation performance than state-of-the-art models.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 10","pages":"8583-8597"},"PeriodicalIF":18.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11032148/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning (DL) requires large amounts of labeled data, which is extremely time-consuming and labor-intensive to obtain for medical image segmentation tasks. Meta-learning focuses on developing learning strategies that enable quick adaptation to new tasks with limited labeled data. However, rich-class medical image segmentation datasets for constructing meta-learning multi-tasks are currently unavailable. In addition, data collected from various healthcare sites and devices may present significant distribution differences, potentially degrading model’s performance. In this paper, we propose a task augmentation-based meta-learning method for retinal image segmentation (TAMS) to meet labor-intensive annotation demand. A retinal Lesion Simulation Algorithm (LSA) is proposed to automatically generate multi-class retinal disease datasets with pixel-level segmentation labels, such that meta-learning tasks can be augmented without collecting data from various sources. In addition, a novel simulation function library is designed to control generation process and ensure interpretability. Moreover, a generative simulation network (GSNet) with an improved adversarial training strategy is introduced to maintain high-quality representations of complex retinal diseases. TAMS is evaluated on three different OCT and CFP image datasets, and comprehensive experiments have demonstrated that TAMS achieves superior segmentation performance than state-of-the-art models.