Rahul Varki, Massimiliano Rossi, Eddie Ferro, Marco Oliva, Erik Garrison, Ben Langmead, Christina Boucher
{"title":"Accurate short-read alignment through r-index-based pangenome indexing","authors":"Rahul Varki, Massimiliano Rossi, Eddie Ferro, Marco Oliva, Erik Garrison, Ben Langmead, Christina Boucher","doi":"10.1101/gr.279858.124","DOIUrl":null,"url":null,"abstract":"Aligning to a linear reference genome can result in a higher percentage of reads going unmapped or being incorrectly mapped owing to variations not captured by the reference, otherwise known as reference bias. Recently, in efforts to mitigate reference bias, there has been a movement to switch to using pangenomes, a collection of genomes, as the reference. In this paper, we introduce Moni-align, the first short-read pangenome aligner built on the <em>r</em>-index, a variation of the classical FM-index that can index collections of genomes in O(<em>r</em>)-space, where <em>r</em> is the number of runs in the Burrows–Wheeler transform. Moni-align uses a seed-and-extend strategy for aligning reads, utilizing maximal exact matches as seeds, which can be efficiently obtained with the <em>r</em>-index. Using both simulated and real short-read data sets, we demonstrate that Moni-align achieves alignment accuracy comparable to vg map and vg giraffe, the leading pangenome aligners. Although currently best suited for aligning to localized pangenomes owing to computational constraints, Moni-align offers a robust foundation for future optimizations that could further broaden its applicability.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"22 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279858.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aligning to a linear reference genome can result in a higher percentage of reads going unmapped or being incorrectly mapped owing to variations not captured by the reference, otherwise known as reference bias. Recently, in efforts to mitigate reference bias, there has been a movement to switch to using pangenomes, a collection of genomes, as the reference. In this paper, we introduce Moni-align, the first short-read pangenome aligner built on the r-index, a variation of the classical FM-index that can index collections of genomes in O(r)-space, where r is the number of runs in the Burrows–Wheeler transform. Moni-align uses a seed-and-extend strategy for aligning reads, utilizing maximal exact matches as seeds, which can be efficiently obtained with the r-index. Using both simulated and real short-read data sets, we demonstrate that Moni-align achieves alignment accuracy comparable to vg map and vg giraffe, the leading pangenome aligners. Although currently best suited for aligning to localized pangenomes owing to computational constraints, Moni-align offers a robust foundation for future optimizations that could further broaden its applicability.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.