The Na+-pumping mechanism driven by redox reactions in the NADH-quinone oxidoreductase from Vibrio cholerae relies on dynamic conformational changes.

Moe Ishikawa-Fukuda, Takehito Seki, Jun-Ichi Kishikawa, Takahiro Masuya, Kei-Ichi Okazaki, Takayuki Kato, Blanca Barquera, Hideto Miyoshi, Masatoshi Murai
{"title":"The Na<sup>+</sup>-pumping mechanism driven by redox reactions in the NADH-quinone oxidoreductase from <i>Vibrio cholerae</i> relies on dynamic conformational changes.","authors":"Moe Ishikawa-Fukuda, Takehito Seki, Jun-Ichi Kishikawa, Takahiro Masuya, Kei-Ichi Okazaki, Takayuki Kato, Blanca Barquera, Hideto Miyoshi, Masatoshi Murai","doi":"10.1101/2025.06.01.656757","DOIUrl":null,"url":null,"abstract":"<p><p>The Na<sup>+</sup>-pumping NADH-quinone oxidoreductase (Na<sup>+</sup>-NQR) is a key respiratory enzyme in many marine and pathogenic bacteria that couples electron transfer to Na<sup>+</sup>-pumping across the membrane. Earlier X-ray and cryo-EM structures of Na<sup>+</sup>-NQR from <i>Vibrio cholerae</i> suggested that the subunits harboring redox cofactors undergo conformational changes during catalytic turnover. However, these proposed rearrangements have not yet been confirmed. Here, we have identified at least five distinct conformational states of Na<sup>+</sup>-NQR using: mutants that lack specific cofactors, specific inhibitors or low-sodium conditions. Molecular dynamics simulations based on these structural insights indicate that 2Fe-2S reduction in NqrD/E plays a crucial role in triggering Na<sup>+</sup> translocation by driving structural rearrangements in the NqrD/E subunits, which subsequently influence NqrC and NqrF positioning. This study provides the first structural insights into the mechanism of Na<sup>+</sup> translocation coupled to electron transfer in Na<sup>+</sup>-NQR.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.01.656757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Na+-pumping NADH-quinone oxidoreductase (Na+-NQR) is a key respiratory enzyme in many marine and pathogenic bacteria that couples electron transfer to Na+-pumping across the membrane. Earlier X-ray and cryo-EM structures of Na+-NQR from Vibrio cholerae suggested that the subunits harboring redox cofactors undergo conformational changes during catalytic turnover. However, these proposed rearrangements have not yet been confirmed. Here, we have identified at least five distinct conformational states of Na+-NQR using: mutants that lack specific cofactors, specific inhibitors or low-sodium conditions. Molecular dynamics simulations based on these structural insights indicate that 2Fe-2S reduction in NqrD/E plays a crucial role in triggering Na+ translocation by driving structural rearrangements in the NqrD/E subunits, which subsequently influence NqrC and NqrF positioning. This study provides the first structural insights into the mechanism of Na+ translocation coupled to electron transfer in Na+-NQR.

霍乱弧菌nadh -醌氧化还原酶氧化还原反应驱动的Na +泵送机制依赖于动态构象变化。
钠离子泵送nadh -醌氧化还原酶(Na + -NQR)是许多海洋细菌和致病菌的关键呼吸酶,它将电子转移与钠离子泵送结合在一起。早期霍乱弧菌Na + -NQR的x射线和低温电镜结构表明,在催化转化过程中,含有氧化还原辅因子的亚基发生了构象变化。然而,这些拟议的重新安排尚未得到证实。在这里,我们已经确定了至少五种不同的Na + -NQR构象状态:缺乏特定辅因子的突变体,特定抑制剂或低钠条件。基于这些结构见解的分子动力学模拟表明,NqrD/E中的2Fe-2S还原通过驱动NqrD/E亚基的结构重排在触发Na +易位中起着至关重要的作用,从而影响NqrC和NqrF的定位。这项研究首次从结构上深入了解了Na +易位与Na + -NQR中电子转移的耦合机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信