Unsupervised discovery and predictive sensorimotor transformation of spider prey capture through active vibration sensing.

Hsin-Yi Hung, Abel Corver, Andrew Gordus
{"title":"Unsupervised discovery and predictive sensorimotor transformation of spider prey capture through active vibration sensing.","authors":"Hsin-Yi Hung, Abel Corver, Andrew Gordus","doi":"10.1101/2025.06.08.658484","DOIUrl":null,"url":null,"abstract":"<p><p>Animals flexibly adjust posture and movement in response to vibrational sensory input to extract information from dynamic environments. While sensorimotor transformations have been extensively studied in visual and somatosensory systems, their structure remains poorly understood in substrate-borne vibration sensing. Here, we combine high-resolution web vibration recordings with fine-scale behavioral tracking in the orb-weaving spider <i>Uloborus diversus</i> to dissect the sensorimotor basis of prey capture. Using unsupervised modeling, we identified discrete behavioral states that structure spider capture sequences, achieving over 83% classification accuracy. We then developed a predictive framework combining a linear-filtered generalized linear model (GLM) with a hidden Markov model (HMM) that robustly forecasts behavioral transitions across diverse prey vibration contexts. Notably, spiders exhibit context-dependent motor transitions-such as crouching and shaking-following decreases in prey vibrational power, consistent with active sensing behaviors that enhance signal detection. Furthermore, spiders reliably turn toward the web radius exhibiting the highest vibration amplitude during prey localization, demonstrating that amplitude alone predicts turning direction. These findings reveal a structured, predictive sensorimotor transformation linking external vibration cues to internal behavioral states. Our results highlight general principles of active sensing and closed-loop control in non-visual invertebrate systems, with broader implications for sensorimotor integration across species.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157624/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.08.658484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Animals flexibly adjust posture and movement in response to vibrational sensory input to extract information from dynamic environments. While sensorimotor transformations have been extensively studied in visual and somatosensory systems, their structure remains poorly understood in substrate-borne vibration sensing. Here, we combine high-resolution web vibration recordings with fine-scale behavioral tracking in the orb-weaving spider Uloborus diversus to dissect the sensorimotor basis of prey capture. Using unsupervised modeling, we identified discrete behavioral states that structure spider capture sequences, achieving over 83% classification accuracy. We then developed a predictive framework combining a linear-filtered generalized linear model (GLM) with a hidden Markov model (HMM) that robustly forecasts behavioral transitions across diverse prey vibration contexts. Notably, spiders exhibit context-dependent motor transitions-such as crouching and shaking-following decreases in prey vibrational power, consistent with active sensing behaviors that enhance signal detection. Furthermore, spiders reliably turn toward the web radius exhibiting the highest vibration amplitude during prey localization, demonstrating that amplitude alone predicts turning direction. These findings reveal a structured, predictive sensorimotor transformation linking external vibration cues to internal behavioral states. Our results highlight general principles of active sensing and closed-loop control in non-visual invertebrate systems, with broader implications for sensorimotor integration across species.

基于主动振动感知的蜘蛛猎物捕获的无监督发现与预测感觉运动转化。
动物灵活地调整姿态和运动,以响应振动感官输入,从动态环境中提取信息。虽然感觉运动转换在视觉和体感系统中已经得到了广泛的研究,但它们的结构在基底振动传感中仍然知之甚少。在此,我们将高分辨率的蛛网振动记录与精细尺度的行为跟踪相结合,分析了织网蜘蛛捕获猎物的感觉运动基础。使用无监督建模,我们识别了结构蜘蛛捕获序列的离散行为状态,实现了超过83%的分类准确率。然后,我们开发了一个结合线性滤波广义线性模型(GLM)和隐马尔可夫模型(HMM)的预测框架,该框架可以鲁棒地预测不同猎物振动环境下的行为转变。值得注意的是,蜘蛛表现出与环境相关的运动转换,如蹲伏和摇晃,随着猎物振动功率的降低,与增强信号检测的主动感知行为一致。此外,蜘蛛在猎物定位过程中可靠地转向显示最高振动幅度的网半径,表明仅振幅就可以预测转向方向。这些发现揭示了一种结构化的、预测性的感觉运动转换,将外部振动线索与内部行为状态联系起来。我们的研究结果强调了非视觉无脊椎动物系统中主动感知和闭环控制的一般原理,对跨物种的感觉运动整合具有更广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信