scMetaIntegrator: a meta-analysis approach to paired single-cell differential expression analysis.

Kalani Ratnasiri, Sara N Mach, Catherine A Blish, Purvesh Khatri
{"title":"scMetaIntegrator: a meta-analysis approach to paired single-cell differential expression analysis.","authors":"Kalani Ratnasiri, Sara N Mach, Catherine A Blish, Purvesh Khatri","doi":"10.1101/2025.06.04.657898","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional differential gene expression methods are limited for analysis of single cell RNA-sequencing (scRNA-seq) studies that use paired repeated measures and matched cohort designs. Many existing approaches consider cells as independent samples, leading to high false positive rates while ignoring inherent sampling structures. Although pseudobulk methods address this, they ignore intra-sample expression variability and have higher false negatives rates. We propose a novel meta-analysis approach that accounts for biological replicates and cell variability in paired scRNA-seq data. Using both real and synthetic datasets, we show that our method, single-cell MetaIntegrator (https://github.com/Khatri-Lab/scMetaIntegrator), provides robust effect size estimates and reproducible p-values.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157664/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.04.657898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional differential gene expression methods are limited for analysis of single cell RNA-sequencing (scRNA-seq) studies that use paired repeated measures and matched cohort designs. Many existing approaches consider cells as independent samples, leading to high false positive rates while ignoring inherent sampling structures. Although pseudobulk methods address this, they ignore intra-sample expression variability and have higher false negatives rates. We propose a novel meta-analysis approach that accounts for biological replicates and cell variability in paired scRNA-seq data. Using both real and synthetic datasets, we show that our method, single-cell MetaIntegrator (https://github.com/Khatri-Lab/scMetaIntegrator), provides robust effect size estimates and reproducible p-values.

scMetaIntegrator:配对单细胞差异表达分析的荟萃分析方法。
传统的差异基因表达方法在使用成对重复测量和匹配队列设计的单细胞rna测序(scRNA-seq)研究分析中受到限制。许多现有的方法将细胞视为独立的样本,导致高假阳性率,而忽略了固有的采样结构。虽然伪批量方法解决了这个问题,但它们忽略了样本内表达的可变性,并且具有更高的假阴性率。我们提出了一种新的荟萃分析方法,该方法可以解释配对scRNA-seq数据中的生物复制和细胞变异性。使用真实数据集和合成数据集,我们证明了我们的方法,单细胞metainintegrator (https://github.com/Khatri-Lab/scMetaIntegrator),提供了稳健的效应大小估计和可重复的p值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信