Integrated Histology and Molecular Profiling of Postmortem Human Auditory and Vestibular Organs via a Poly(Methyl Methacrylate)-Based Workflow.

David Bächinger, Brock Peyton, Jacqueline Neubauer, Anbuselvan Dharmarajan, MengYu Zhu, Jennifer T O'Malley, Venus Kallupurackal, Steven Senese, Alison Brown, Sabina Wunderlin, Susanne Kreutzer, Nora M Weiss, Heiko Richter, Adrian Dalbert, Christof Röösli, Anja Kipar, Zsuzsanna Varga, Brigitte von Rechenberg, Sami S Amr, Andreas H Eckhard
{"title":"Integrated Histology and Molecular Profiling of Postmortem Human Auditory and Vestibular Organs via a Poly(Methyl Methacrylate)-Based Workflow.","authors":"David Bächinger, Brock Peyton, Jacqueline Neubauer, Anbuselvan Dharmarajan, MengYu Zhu, Jennifer T O'Malley, Venus Kallupurackal, Steven Senese, Alison Brown, Sabina Wunderlin, Susanne Kreutzer, Nora M Weiss, Heiko Richter, Adrian Dalbert, Christof Röösli, Anja Kipar, Zsuzsanna Varga, Brigitte von Rechenberg, Sami S Amr, Andreas H Eckhard","doi":"10.1101/2025.06.04.657716","DOIUrl":null,"url":null,"abstract":"<p><p>Hearing and balance disorders are the most prevalent sensory impairments, affecting hundreds of millions worldwide, yet their underlying cellular and molecular pathologies remain poorly understood. This knowledge gap stems from the inaccessibility of the ear's sensory organs-embedded within the temporal bone (TB), the hardest bone in the body-which cannot be biopsied in living patients without causing irreversible damage. Conventional histopathology workflows rely on postmortem en bloc extraction of TBs, followed by lengthy decalcification, celloidin embedding, and manual serial sectioning of these large specimens-a process that takes one to two years, is labor- and cost-intensive, and lacks compatibility with most modern protein, DNA, and RNA assays. Here, we present a rapid, reversible polymethyl methacrylate (rPMMA) workflow that enables advanced molecular histopathology studies on formalin-fixed, calcified TBs. Our protocol uses low-temperature (-40 °C to +4 °C) resin embedding, precision near-serial sectioning (10-50 µm) via femtosecond laser microtomy or precision diamond wire sawing, and subsequent deacrylation to fully restore tissue accessibility for high-fidelity histomorphology, multiplexed immunofluorescence, whole-genome sequencing, and in situ mRNA detection (RNAscope<sup>™</sup>) assays. Compared to the gold-standard celloidin workflow, our method reduces processing time and costs by approximately 90% while integrating equivalent histomorphology with advanced molecular assays, providing a new benchmark for multidimensional studies in human hearing and balance pathologies.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157654/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.04.657716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hearing and balance disorders are the most prevalent sensory impairments, affecting hundreds of millions worldwide, yet their underlying cellular and molecular pathologies remain poorly understood. This knowledge gap stems from the inaccessibility of the ear's sensory organs-embedded within the temporal bone (TB), the hardest bone in the body-which cannot be biopsied in living patients without causing irreversible damage. Conventional histopathology workflows rely on postmortem en bloc extraction of TBs, followed by lengthy decalcification, celloidin embedding, and manual serial sectioning of these large specimens-a process that takes one to two years, is labor- and cost-intensive, and lacks compatibility with most modern protein, DNA, and RNA assays. Here, we present a rapid, reversible polymethyl methacrylate (rPMMA) workflow that enables advanced molecular histopathology studies on formalin-fixed, calcified TBs. Our protocol uses low-temperature (-40 °C to +4 °C) resin embedding, precision near-serial sectioning (10-50 µm) via femtosecond laser microtomy or precision diamond wire sawing, and subsequent deacrylation to fully restore tissue accessibility for high-fidelity histomorphology, multiplexed immunofluorescence, whole-genome sequencing, and in situ mRNA detection (RNAscope) assays. Compared to the gold-standard celloidin workflow, our method reduces processing time and costs by approximately 90% while integrating equivalent histomorphology with advanced molecular assays, providing a new benchmark for multidimensional studies in human hearing and balance pathologies.

基于聚甲基丙烯酸甲酯工作流的人死后听觉和前庭器官的综合组织学和分子分析。
听力和平衡障碍是最普遍的感觉障碍,影响着全世界数亿人,但对其潜在的细胞和分子病理仍知之甚少。这种知识上的差距源于耳朵的感觉器官难以接近,它们位于人体最坚硬的颞骨(TB)内,无法对活着的患者进行活检,否则会造成不可逆转的损害。传统的组织病理学工作流程依赖于死后tb的整块提取,随后是冗长的脱钙、纤维蛋白包埋和这些大型标本的手动连续切片——这一过程需要一到两年的时间,是劳动力和成本密集型的,并且与大多数现代蛋白质、DNA和RNA检测缺乏兼容性。在这里,我们提出了一种快速,可逆的聚甲基丙烯酸甲酯(rPMMA)工作流程,可以对福尔马林固定的钙化结核进行高级分子组织病理学研究。我们的方案使用低温(-40°C至+4°C)树脂包埋,通过飞秒激光显微切开术或精密金刚石线锯进行精密近序列切片(10-50 μ m),随后进行去丙烯化,以完全恢复组织可达性,从而进行高保真组织形态学、多路免疫荧光、全基因组测序和原位mRNA检测(RNAscope™)分析。与金标准的纤维蛋白工作流程相比,我们的方法减少了大约90%的处理时间和成本,同时将等效组织形态学与先进的分子分析相结合,为人类听力和平衡病理的多维研究提供了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信