A novel Notch and WNT signaling mechanism contribute to paediatric DCM: a pathway to new therapeutics.

Obed O Nyarko, Ethan Rausch, Jared R H Goff, Anis Karimpour-Fard, Caitlyn S Conard, Laura Hernandez-Lagunas, McKenna P A Burns, Brisa Peña, Shelley D Miyamoto, Brian L Stauffer, Carmen C Sucharov
{"title":"A novel Notch and WNT signaling mechanism contribute to paediatric DCM: a pathway to new therapeutics.","authors":"Obed O Nyarko, Ethan Rausch, Jared R H Goff, Anis Karimpour-Fard, Caitlyn S Conard, Laura Hernandez-Lagunas, McKenna P A Burns, Brisa Peña, Shelley D Miyamoto, Brian L Stauffer, Carmen C Sucharov","doi":"10.1101/2025.06.07.658396","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Paediatric Idiopathic dilated cardiomyopathy (iDCM) is a life-threatening disease. The lack of disease-specific animal models limits our understanding of its mechanisms. We previously demonstrated that paediatric iDCM serum-circulating proteins promote pathologic remodeling <i>in vitro</i>, and that secreted frizzled related protein 1 (sFRP1) increases stiffness in cardiomyocytes. Here we investigated the mechanisms by which sFRP1 contributes to iDCM.</p><p><strong>Methods: </strong>The effect of sFRP1 in combination with isoproterenol (ISO) (to recapitulate the increase in circulating catecholamine observed in paediatric iDCM) was evaluated in neonatal rat ventricular myocytes (<i>in vitro</i>), and in neonatal rats through intraperitoneal injections (<i>in vivo</i>). Function and molecular mechanisms were investigated through echocardiography and next-generation-sequencing. Protein levels and localization were determined by Western blot. Tissue stiffness was measured by Atomic Force Microscopy. <i>In vitro</i> and <i>in vivo</i> data were compared to explanted human heart tissue.</p><p><strong>Results: </strong>We show that ISO+sFRP1 reactivates the fetal gene program <i>in vitro,</i> and promotes cardiac dysfunction, dilation and stiffness <i>in vivo</i>. Importantly, we show stiffness is also increased in paediatric iDCM hearts. We identified co-activation of Notch and WNT signaling in both ISO+sFRP1-treated rats and paediatric iDCM hearts. Mechanistically, <i>in vitro</i> inhibition of Notch or β-catenin prevented pathological remodeling, and Notch inhibition improved cardiac function, myocardial stiffness and ventricular dilation in ISO+sFRP1-treated rats.</p><p><strong>Conclusion: </strong>We identified alterations in Notch and WNT signaling in paediatric iDCM hearts and in our model. Notch inhibition abrogated pathologic changes <i>in vitro</i> and <i>in vivo</i>. These findings provide novel mechanistic insights and a potential therapeutic target for paediatric iDCM.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.07.658396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Paediatric Idiopathic dilated cardiomyopathy (iDCM) is a life-threatening disease. The lack of disease-specific animal models limits our understanding of its mechanisms. We previously demonstrated that paediatric iDCM serum-circulating proteins promote pathologic remodeling in vitro, and that secreted frizzled related protein 1 (sFRP1) increases stiffness in cardiomyocytes. Here we investigated the mechanisms by which sFRP1 contributes to iDCM.

Methods: The effect of sFRP1 in combination with isoproterenol (ISO) (to recapitulate the increase in circulating catecholamine observed in paediatric iDCM) was evaluated in neonatal rat ventricular myocytes (in vitro), and in neonatal rats through intraperitoneal injections (in vivo). Function and molecular mechanisms were investigated through echocardiography and next-generation-sequencing. Protein levels and localization were determined by Western blot. Tissue stiffness was measured by Atomic Force Microscopy. In vitro and in vivo data were compared to explanted human heart tissue.

Results: We show that ISO+sFRP1 reactivates the fetal gene program in vitro, and promotes cardiac dysfunction, dilation and stiffness in vivo. Importantly, we show stiffness is also increased in paediatric iDCM hearts. We identified co-activation of Notch and WNT signaling in both ISO+sFRP1-treated rats and paediatric iDCM hearts. Mechanistically, in vitro inhibition of Notch or β-catenin prevented pathological remodeling, and Notch inhibition improved cardiac function, myocardial stiffness and ventricular dilation in ISO+sFRP1-treated rats.

Conclusion: We identified alterations in Notch and WNT signaling in paediatric iDCM hearts and in our model. Notch inhibition abrogated pathologic changes in vitro and in vivo. These findings provide novel mechanistic insights and a potential therapeutic target for paediatric iDCM.

一个新的Notch和WNT信号机制有助于儿童DCM:一个新的治疗途径。
背景:儿童特发性扩张型心肌病(iDCM)是一种危及生命的疾病。对其细胞和转录景观知之甚少,缺乏疾病特异性动物模型限制了我们对其机制的理解。我们之前证明,儿童iDCM血清循环蛋白在体外促进病理性重塑,分泌卷曲相关蛋白1 (sFRP1)增加心肌细胞的硬度。在这里,我们研究了sFRP1导致心功能障碍的机制。方法:在新生儿大鼠心室肌细胞(体外)和新生儿大鼠腹腔注射(体内)中评估sFRP1联合异丙肾上腺素(ISO)(概括儿科DCM患者中观察到的循环儿茶酚胺的增加)的作用。分别通过超声心动图和下一代测序研究其功能和分子机制。Western blot检测蛋白水平和定位。用原子力显微镜测量组织刚度。体外和体内数据与移植的人心脏组织(离体)进行比较。结果:我们发现ISO+sFRP1在体外重新激活胎儿基因程序,并在体内促进心功能障碍,扩张和僵硬。重要的是,我们发现小儿iDCM心脏僵硬度也增加了。我们在ISO+ sfrp1处理的大鼠和儿童iDCM心脏中发现了Notch和WNT信号的共同激活。在机制上,Notch或β-catenin的体外抑制可防止病理性重构,Notch抑制可改善ISO+ sfrp1处理大鼠和nrvm的心功能并降低心室扩张。结论:我们在儿童iDCM心脏和ISO+ sfrp1处理的大鼠中发现了Notch和WNT信号的一致性改变。Notch抑制消除了体内和体外的病理变化。这些发现为儿童iDCM提供了新的机制见解和潜在的治疗靶点。临床视角:有什么新发现?由于缺乏动物模型和对疾病机制的了解,对儿童iDCM的了解仍然很少。本研究建立了一个独特的年轻大鼠模型,概括了该疾病的关键特征,包括收缩功能受损,心室扩张,心肌僵硬和独特的转录组特征。本研究探讨了儿童iDCM心脏中常见的分子通路改变和我们的新动物模型。临床意义:我们发现Notch和WNT共激活是病理性重塑和心功能障碍的关键调节因子,并表明抑制Notch信号可以预防病理性重塑和心功能障碍,这表明靶向Notch通路可能是治疗儿童DCM的可行选择。这些发现为研究儿童DCM的针对性干预提供了临床前模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信