Unraveling Complex Temporal Patterns in EHRs via Robust Irregular Tensor Factorization.

Ren Yifei, Linghui Zeng, Jian Lou, Li Xiong, Joyce C Ho, Xiaoqian Jiang, Sivasubramanium V Bhavani
{"title":"Unraveling Complex Temporal Patterns in EHRs via Robust Irregular Tensor Factorization.","authors":"Ren Yifei, Linghui Zeng, Jian Lou, Li Xiong, Joyce C Ho, Xiaoqian Jiang, Sivasubramanium V Bhavani","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p><i>Electronic health records (EHRs) contain diverse patient data with varying visit frequencies. While irregular tensor factorization techniques such as PARAFAC2 have been used for extracting meaningful medical concepts from EHRs, existing methods fail to capture non-linear and complex temporal patterns and struggle with missing entries. In this paper, we propose</i> REPAR<i>, an</i> R<i>NN R</i>E<i>gularized Robust</i> PAR<i>AFAC2 method to model complex temporal dependencies and enhance robustness in the presence of missing data. Our approach employs Recurrent Neural Networks (RNNs) for temporal regularization and a low-rank constraint for robustness, enabling precise patient subgroup identification and improved clinical decision-making in noisy EHR data. We design a hybrid optimization framework that handles multiple regularizations and various data types. REPAR is evaluated on 3 real-world EHR datasets, demonstrating improved reconstruction and robustness under missing data. Two case studies further showcase REPAR's ability to extract meaningful dynamic phenotypes and enhance phenotype predictability from noisy temporal EHRs.</i></p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"451-460"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150736/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic health records (EHRs) contain diverse patient data with varying visit frequencies. While irregular tensor factorization techniques such as PARAFAC2 have been used for extracting meaningful medical concepts from EHRs, existing methods fail to capture non-linear and complex temporal patterns and struggle with missing entries. In this paper, we propose REPAR, an RNN REgularized Robust PARAFAC2 method to model complex temporal dependencies and enhance robustness in the presence of missing data. Our approach employs Recurrent Neural Networks (RNNs) for temporal regularization and a low-rank constraint for robustness, enabling precise patient subgroup identification and improved clinical decision-making in noisy EHR data. We design a hybrid optimization framework that handles multiple regularizations and various data types. REPAR is evaluated on 3 real-world EHR datasets, demonstrating improved reconstruction and robustness under missing data. Two case studies further showcase REPAR's ability to extract meaningful dynamic phenotypes and enhance phenotype predictability from noisy temporal EHRs.

基于鲁棒不规则张量分解的电子病历复杂时间模式研究。
电子健康记录(EHRs)包含不同访问频率的各种患者数据。虽然不规则张量分解技术(如PARAFAC2)已用于从电子病历中提取有意义的医学概念,但现有方法无法捕获非线性和复杂的时间模式,并且难以处理缺失条目。在本文中,我们提出了REPAR,一种RNN正则化鲁棒PARAFAC2方法来建模复杂的时间依赖性,并增强存在缺失数据的鲁棒性。我们的方法采用递归神经网络(rnn)进行时间正则化,并采用低秩约束进行鲁棒性,从而能够在嘈杂的EHR数据中精确识别患者亚组并改进临床决策。我们设计了一个混合优化框架来处理多种正则化和各种数据类型。REPAR在3个真实的EHR数据集上进行了评估,显示了在缺失数据下改进的重建和鲁棒性。两个案例研究进一步展示了REPAR从嘈杂的时间电子病历中提取有意义的动态表型和增强表型可预测性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信