Mitchell A Klusty, W Vaiden Logan, Samuel E Armstrong, Aaron D Mullen, Caroline N Leach, Ken Calvert, Jeff Talbert, V K Cody Bumgardner
{"title":"Toward Automated Clinical Transcriptions.","authors":"Mitchell A Klusty, W Vaiden Logan, Samuel E Armstrong, Aaron D Mullen, Caroline N Leach, Ken Calvert, Jeff Talbert, V K Cody Bumgardner","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Administrative documentation is a major driver of rising healthcare costs and is linked to adverse outcomes, including physician burnout and diminished quality of care. This paper introduces a secure system that applies recent advancements in speech-to-text transcription and speaker-labeling (diarization) to patient-provider conversations. This system is optimized to produce accurate transcriptions and highlight potential errors to promote rapid human verification, further reducing the necessary manual effort. Applied to over 40 hours of simulated conversations, this system offers a promising foundation for automating clinical transcriptions.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"235-241"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Administrative documentation is a major driver of rising healthcare costs and is linked to adverse outcomes, including physician burnout and diminished quality of care. This paper introduces a secure system that applies recent advancements in speech-to-text transcription and speaker-labeling (diarization) to patient-provider conversations. This system is optimized to produce accurate transcriptions and highlight potential errors to promote rapid human verification, further reducing the necessary manual effort. Applied to over 40 hours of simulated conversations, this system offers a promising foundation for automating clinical transcriptions.