Predicting survival time for critically ill patients with heart failure using conformalized survival analysis.

Xiaomeng Wang, Zhimei Ren, Jiancheng Ye
{"title":"Predicting survival time for critically ill patients with heart failure using conformalized survival analysis.","authors":"Xiaomeng Wang, Zhimei Ren, Jiancheng Ye","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure (HF) is a significant public health challenge, especially among critically ill patients in intensive care units (ICUs). Predicting survival outcomes for these patients with calibrated uncertainty is both challenging and essential for guiding subsequent treatments. This study introduces conformalized survival analysis (CSA) as a novel method for predicting survival times in critically ill HF patients. CSA enhances each predicted survival time with a statistically rigorous lower bound, providing valuable uncertainty quantification. Using the MIMIC-IV dataset, we demonstrate that CSA effectively delivers calibrated uncertainty quantification for survival predictions, in contrast to parametric models like the Cox or Accelerated Failure Time models. Through the application of CSA to a large, real-world dataset, this study underscores its potential to improve decision-making in critical care, offering a more precise and reliable tool for prognosis in a setting where accurate predictions and calibrated uncertainty can profoundly impact patient outcomes.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"576-597"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150701/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heart failure (HF) is a significant public health challenge, especially among critically ill patients in intensive care units (ICUs). Predicting survival outcomes for these patients with calibrated uncertainty is both challenging and essential for guiding subsequent treatments. This study introduces conformalized survival analysis (CSA) as a novel method for predicting survival times in critically ill HF patients. CSA enhances each predicted survival time with a statistically rigorous lower bound, providing valuable uncertainty quantification. Using the MIMIC-IV dataset, we demonstrate that CSA effectively delivers calibrated uncertainty quantification for survival predictions, in contrast to parametric models like the Cox or Accelerated Failure Time models. Through the application of CSA to a large, real-world dataset, this study underscores its potential to improve decision-making in critical care, offering a more precise and reliable tool for prognosis in a setting where accurate predictions and calibrated uncertainty can profoundly impact patient outcomes.

应用符合化生存分析预测危重心衰患者的生存时间。
心力衰竭(HF)是一项重大的公共卫生挑战,特别是在重症监护病房(icu)的重症患者中。根据校准的不确定性预测这些患者的生存结果既具有挑战性,又对指导后续治疗至关重要。本研究将符合化生存分析(CSA)作为预测危重心衰患者生存时间的新方法。CSA提高了每个预测生存时间与统计严格的下界,提供有价值的不确定性量化。使用MIMIC-IV数据集,我们证明了与Cox或加速失效时间模型等参数模型相比,CSA有效地为生存预测提供了校准的不确定性量化。通过将CSA应用于大型真实数据集,本研究强调了其改善重症监护决策的潜力,在准确预测和校准不确定性可能深刻影响患者预后的情况下,为预后提供了更精确和可靠的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信