Not Fully Synthetic: LLM-based Hybrid Approaches Towards Privacy-Preserving Clinical Note Sharing.

Atiquer Rahman Sarkar, Yao-Shun Chuang, Xiaoqian Jiang, Noman Mohammed
{"title":"Not Fully Synthetic: LLM-based Hybrid Approaches Towards Privacy-Preserving Clinical Note Sharing.","authors":"Atiquer Rahman Sarkar, Yao-Shun Chuang, Xiaoqian Jiang, Noman Mohammed","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The publication and sharing of clinical notes are crucial for healthcare research and innovation. However, privacy regulations such as HIPAA and GDPR pose significant challenges. While de-identification techniques aim to remove protected health information, they often fall short of achieving complete privacy protection. Similarly, the current state of synthetic clinical note generation can lack nuance and content coverage. To address these limitations, we propose an approach that combines de-identification, filtration, and synthetic clinical note generation. Variations of this approach currently retain 36%-61% of the original note's content and fill the remaining gaps using an LLM, ensuring high information coverage. We also evaluated the de-identification performance of the hybrid notes, demonstrating that they surpass or at least match the standalone de-identification methods. Our results show that hybrid notes can maintain patient privacy while preserving the richness of clinical data. This approach offers a promising solution for safe and effective data sharing, encouraging further research.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"441-450"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The publication and sharing of clinical notes are crucial for healthcare research and innovation. However, privacy regulations such as HIPAA and GDPR pose significant challenges. While de-identification techniques aim to remove protected health information, they often fall short of achieving complete privacy protection. Similarly, the current state of synthetic clinical note generation can lack nuance and content coverage. To address these limitations, we propose an approach that combines de-identification, filtration, and synthetic clinical note generation. Variations of this approach currently retain 36%-61% of the original note's content and fill the remaining gaps using an LLM, ensuring high information coverage. We also evaluated the de-identification performance of the hybrid notes, demonstrating that they surpass or at least match the standalone de-identification methods. Our results show that hybrid notes can maintain patient privacy while preserving the richness of clinical data. This approach offers a promising solution for safe and effective data sharing, encouraging further research.

不完全合成:基于法学硕士的混合方法对隐私保护临床笔记共享。
临床记录的发布和共享对于医疗保健研究和创新至关重要。然而,HIPAA和GDPR等隐私法规带来了重大挑战。虽然去识别技术旨在删除受保护的健康信息,但它们往往无法实现完全的隐私保护。同样,合成临床记录生成的当前状态可能缺乏细微差别和内容覆盖。为了解决这些限制,我们提出了一种结合去识别、过滤和合成临床记录生成的方法。目前,这种方法的变体保留了原始笔记内容的36%-61%,并使用LLM填补了剩余的空白,确保了高信息覆盖率。我们还评估了混合笔记的去识别性能,证明它们超过或至少与独立的去识别方法相匹配。我们的研究结果表明,混合笔记可以在保留临床数据丰富性的同时维护患者隐私。这种方法为安全有效的数据共享提供了一个有希望的解决方案,鼓励进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信