EntroLLM: Leveraging Entropy and Large Language Model Embeddings for Enhanced Risk Prediction with Wearable Device Data.

Xueqing Huang, Tian Gu
{"title":"EntroLLM: Leveraging Entropy and Large Language Model Embeddings for Enhanced Risk Prediction with Wearable Device Data.","authors":"Xueqing Huang, Tian Gu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable devices collect complex structured data with high-dimensional and time-series features that are challenging for traditional models to handle efficiently. We propose EntroLLM, a new method that combines entropy measures and the low-dimensional representation (embedding) generated from large language models (LLMs) to enhance risk prediction using wearable device data. In EntroLLM, the entropy quantifies the variability of a subject's physical activity patterns, while the LLM embedding approximates the latent temporal structure. We evaluate the feasibility and performance of EntroLLM using NHANES data to predict overweight status using demographics and physical activity collected from wearable devices. Results show that combining entropy with GPT-based embedding improves model performance compared to baseline models and other embedding techniques, leading to an average increase in AUC from 0.56 to 0.64. EntroLLM showcases the potential of combining entropy and LLM-based embedding and offers a promising approach to wearable device data analysis for predicting health outcomes.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"225-234"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable devices collect complex structured data with high-dimensional and time-series features that are challenging for traditional models to handle efficiently. We propose EntroLLM, a new method that combines entropy measures and the low-dimensional representation (embedding) generated from large language models (LLMs) to enhance risk prediction using wearable device data. In EntroLLM, the entropy quantifies the variability of a subject's physical activity patterns, while the LLM embedding approximates the latent temporal structure. We evaluate the feasibility and performance of EntroLLM using NHANES data to predict overweight status using demographics and physical activity collected from wearable devices. Results show that combining entropy with GPT-based embedding improves model performance compared to baseline models and other embedding techniques, leading to an average increase in AUC from 0.56 to 0.64. EntroLLM showcases the potential of combining entropy and LLM-based embedding and offers a promising approach to wearable device data analysis for predicting health outcomes.

利用熵和大语言模型嵌入增强可穿戴设备数据的风险预测。
可穿戴设备收集具有高维和时间序列特征的复杂结构化数据,传统模型难以有效处理这些数据。我们提出了一种新的方法EntroLLM,它结合了熵度量和由大型语言模型(llm)生成的低维表示(嵌入),以增强使用可穿戴设备数据的风险预测。在EntroLLM中,熵量化了受试者身体活动模式的可变性,而LLM嵌入近似于潜在的时间结构。我们使用NHANES数据来评估EntroLLM的可行性和性能,通过可穿戴设备收集的人口统计数据和身体活动来预测超重状态。结果表明,与基线模型和其他嵌入技术相比,将熵与基于gpt的嵌入相结合可以提高模型的性能,使AUC平均从0.56提高到0.64。EntroLLM展示了熵和基于llm的嵌入相结合的潜力,并为可穿戴设备的数据分析提供了一种有前途的方法,用于预测健康结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信