{"title":"Empowering Precision Medicine for Rare Diseases through Cloud Infrastructure Refactoring.","authors":"Hui Li, Jinlian Wang, Hongfang Liu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Rare diseases affect approximately 1 in 11 Americans, yet their diagnosis remains challenging due to limited clinical evidence, low awareness, and lack of definitive treatments. Our project aims to accelerate rare disease diagnosis by developing a comprehensive informatics framework leveraging data mining, semantic web technologies, deep learning, and graph-based embedding techniques. However, our on-premises computational infrastructure faces significant challenges in scalability, maintenance, and collaboration. This study focuses on developing and evaluating a cloud-based computing infrastructure to address these challenges. By migrating to a scalable, secure, and collaborative cloud environment, we aim to enhance data integration, support advanced predictive modeling for differential diagnoses, and facilitate widespread dissemination of research findings to stakeholders, the research community, and the public and also proposed a facilitated through a reliable, standardized workflow designed to ensure minimal disruption and maintain data integrity for existing research project.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"300-311"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Rare diseases affect approximately 1 in 11 Americans, yet their diagnosis remains challenging due to limited clinical evidence, low awareness, and lack of definitive treatments. Our project aims to accelerate rare disease diagnosis by developing a comprehensive informatics framework leveraging data mining, semantic web technologies, deep learning, and graph-based embedding techniques. However, our on-premises computational infrastructure faces significant challenges in scalability, maintenance, and collaboration. This study focuses on developing and evaluating a cloud-based computing infrastructure to address these challenges. By migrating to a scalable, secure, and collaborative cloud environment, we aim to enhance data integration, support advanced predictive modeling for differential diagnoses, and facilitate widespread dissemination of research findings to stakeholders, the research community, and the public and also proposed a facilitated through a reliable, standardized workflow designed to ensure minimal disruption and maintain data integrity for existing research project.