Early Alzheimer's Detection Through Voice Analysis: Harnessing Locally Deployable LLMs via ADetectoLocum, a privacy-preserving diagnostic system.

Genevieve A Mortensen, Rui Zhu
{"title":"Early Alzheimer's Detection Through Voice Analysis: Harnessing Locally Deployable LLMs via <i>ADetectoLocum</i>, a privacy-preserving diagnostic system.","authors":"Genevieve A Mortensen, Rui Zhu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Diagnosing Alzheimer's Disease (AD) early and cost-effectively is crucial. Recent advancements in Large Language Models (LLMs) like ChatGPT have made accurate, affordable AD detection feasible. Yet, HIPAA compliance and the challenge of integrating these models into hospital systems limit their use. Addressing these constraints, we introduce ADetectoLocum, an open-source LLM equipped model designed for AD risk detection within hospital environments. This model evaluates AD risk through spontaneous patient speech, enhancing diagnostic processes without external data exchange. Our approach secures local deployment and significantly surpasses previous models in predictive accuracy for AD detection, especially in early-stage identification. ADetectoLocum therefore offers a reliable solution for AD diagnostics in healthcare institutions.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"365-374"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150716/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnosing Alzheimer's Disease (AD) early and cost-effectively is crucial. Recent advancements in Large Language Models (LLMs) like ChatGPT have made accurate, affordable AD detection feasible. Yet, HIPAA compliance and the challenge of integrating these models into hospital systems limit their use. Addressing these constraints, we introduce ADetectoLocum, an open-source LLM equipped model designed for AD risk detection within hospital environments. This model evaluates AD risk through spontaneous patient speech, enhancing diagnostic processes without external data exchange. Our approach secures local deployment and significantly surpasses previous models in predictive accuracy for AD detection, especially in early-stage identification. ADetectoLocum therefore offers a reliable solution for AD diagnostics in healthcare institutions.

通过语音分析早期检测阿尔茨海默氏症:利用本地可部署的llm通过ADetectoLocum,一个隐私保护诊断系统。
早期和经济有效地诊断阿尔茨海默病(AD)至关重要。像ChatGPT这样的大型语言模型(llm)的最新进展使得准确、负担得起的AD检测成为可能。然而,HIPAA合规和将这些模型集成到医院系统中的挑战限制了它们的使用。为了解决这些限制,我们引入了ADetectoLocum,这是一个配备法学硕士的开源模型,专为医院环境中的AD风险检测而设计。该模型通过患者自发的言语来评估AD风险,增强了无需外部数据交换的诊断过程。我们的方法确保了本地部署,并且在AD检测的预测准确性方面显著超过了以前的模型,特别是在早期识别方面。因此,ADetectoLocum为医疗机构的AD诊断提供了可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信