Integrating Social Determinants of Health into Knowledge Graphs: Evaluating Prediction Bias and Fairness in Healthcare.

Tianqi Shang, Weiqing He, Tianlong Chen, Ying Ding, Huanmei Wu, Kaixiong Zhou, Li Shen
{"title":"Integrating Social Determinants of Health into Knowledge Graphs: Evaluating Prediction Bias and Fairness in Healthcare.","authors":"Tianqi Shang, Weiqing He, Tianlong Chen, Ying Ding, Huanmei Wu, Kaixiong Zhou, Li Shen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Social determinants of health (SDoH) play a crucial role in patient health outcomes, yet their integration into biomedical knowledge graphs remains underexplored. This study addresses this gap by constructing an SDoH-enriched knowledge graph using the MIMIC-III dataset and PrimeKG. We introduce a novel fairness formulation for graph embeddings, focusing on invariance with respect to sensitive SDoH information. Via employing a heterogeneous-GCN model for drug-disease link prediction, we detect biases related to various SDoH factors. To mitigate these biases, we propose a post-processing method that strategically reweights edges connected to SDoHs, balancing their influence on graph representations. This approach represents one of the first comprehensive investigations into fairness issues within biomedical knowledge graphs incorporating SDoH. Our work not only highlights the importance of considering SDoH in medical informatics but also provides a concrete method for reducing SDoH-related biases in link prediction tasks, paving the way for more equitable healthcare recommendations. Our code is available at https://github.com/hwq0726/SDoH-KG.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"481-490"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150739/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social determinants of health (SDoH) play a crucial role in patient health outcomes, yet their integration into biomedical knowledge graphs remains underexplored. This study addresses this gap by constructing an SDoH-enriched knowledge graph using the MIMIC-III dataset and PrimeKG. We introduce a novel fairness formulation for graph embeddings, focusing on invariance with respect to sensitive SDoH information. Via employing a heterogeneous-GCN model for drug-disease link prediction, we detect biases related to various SDoH factors. To mitigate these biases, we propose a post-processing method that strategically reweights edges connected to SDoHs, balancing their influence on graph representations. This approach represents one of the first comprehensive investigations into fairness issues within biomedical knowledge graphs incorporating SDoH. Our work not only highlights the importance of considering SDoH in medical informatics but also provides a concrete method for reducing SDoH-related biases in link prediction tasks, paving the way for more equitable healthcare recommendations. Our code is available at https://github.com/hwq0726/SDoH-KG.

将健康的社会决定因素整合到知识图谱中:评估医疗保健中的预测偏差和公平性。
健康的社会决定因素(SDoH)在患者健康结果中起着至关重要的作用,但将其整合到生物医学知识图谱中仍未得到充分探索。本研究通过使用MIMIC-III数据集和PrimeKG构建一个sdoh丰富的知识图来解决这一差距。我们引入了一种新的图嵌入公平性公式,重点关注敏感SDoH信息的不变性。通过采用异构gcn模型进行药物-疾病联系预测,我们检测到与各种SDoH因素相关的偏差。为了减轻这些偏差,我们提出了一种后处理方法,策略性地重新加权与sdoh相连的边,平衡它们对图表示的影响。这种方法代表了对生物医学知识图谱中包含SDoH的公平性问题的首次全面调查之一。我们的工作不仅强调了在医学信息学中考虑SDoH的重要性,而且还提供了一种具体的方法来减少链接预测任务中与SDoH相关的偏差,为更公平的医疗建议铺平了道路。我们的代码可在https://github.com/hwq0726/SDoH-KG上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信