Identifying Dietary Supplements Related Effects from Social Media by ChatGPT.

Ying Liu, Yu Hou, Jeremy Yeung, Tou Thao, Meijia Song, Rubina Rizvi, Jiang Bian, Rui Zhang
{"title":"Identifying Dietary Supplements Related Effects from Social Media by ChatGPT.","authors":"Ying Liu, Yu Hou, Jeremy Yeung, Tou Thao, Meijia Song, Rubina Rizvi, Jiang Bian, Rui Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study advances relationship identification in social media by analyzing dietary supplement-related tweets aiming to expand the drug-supplement interactions dataset iDisk. We collected 90,000+ tweets (2007-2022) and annotated 1,000 for nuanced relationships and entities. Using a BioBERT model and ChatGPT-generated prompts, we conducted entity type and relationship identification. The BioBERT model achieved an F1 score of 0.90 for relationship prediction, while ChatGPT prompts reached 0.99. Entity type recognition proved more challenging, with high semantic similarity between types impacting accuracy. Our methodology significantly enhances relationship identification from social media data, particularly for dietary supplements usage, offering promising methods for improved post-market surveillance and public health monitoring. This work demonstrates the potential of combining traditional NLP models with large language models for complex text analysis tasks in healthcare.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"322-331"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150709/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study advances relationship identification in social media by analyzing dietary supplement-related tweets aiming to expand the drug-supplement interactions dataset iDisk. We collected 90,000+ tweets (2007-2022) and annotated 1,000 for nuanced relationships and entities. Using a BioBERT model and ChatGPT-generated prompts, we conducted entity type and relationship identification. The BioBERT model achieved an F1 score of 0.90 for relationship prediction, while ChatGPT prompts reached 0.99. Entity type recognition proved more challenging, with high semantic similarity between types impacting accuracy. Our methodology significantly enhances relationship identification from social media data, particularly for dietary supplements usage, offering promising methods for improved post-market surveillance and public health monitoring. This work demonstrates the potential of combining traditional NLP models with large language models for complex text analysis tasks in healthcare.

通过ChatGPT识别社交媒体对膳食补充剂的相关影响。
本研究通过分析膳食补充剂相关推文来推进社交媒体中的关系识别,旨在扩展药物补充剂相互作用数据集iDisk。我们收集了9万多条推文(2007-2022),并对1000条细微的关系和实体进行了注释。使用BioBERT模型和chatgpt生成的提示,我们进行了实体类型和关系识别。BioBERT模型在关系预测方面的F1得分为0.90,而ChatGPT提示则达到0.99。实体类型识别被证明更具挑战性,类型之间的高语义相似性会影响准确性。我们的方法显著增强了社交媒体数据的关系识别,特别是对于膳食补充剂的使用,为改进上市后监测和公共卫生监测提供了有希望的方法。这项工作展示了将传统NLP模型与大型语言模型结合起来用于医疗保健领域复杂文本分析任务的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信