Mike Becker, Sy Hwang, Emily Schriver, Caryn Douma, Caoimhe Duffy, Joshua Atkins, Caitlyn McShane, Jason Lubken, Asaf Hanish, John D McGreevey, Susan Harkness Regli, Danielle L Mowery
{"title":"Automatically Identifying Event Reports of Workplace Violence and Communication Failures using Large Language Models.","authors":"Mike Becker, Sy Hwang, Emily Schriver, Caryn Douma, Caoimhe Duffy, Joshua Atkins, Caitlyn McShane, Jason Lubken, Asaf Hanish, John D McGreevey, Susan Harkness Regli, Danielle L Mowery","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Safety event reporting forms a cornerstone of identifying and mitigating risks to patient and staff safety. However, variabilities in reporting and limited resources to analyze and classify event reports delay healthcare organizations' ability to rapidly identify safety event trends and to improve workplace safety. We demonstrated how large language models can classify safety event report narratives as workplace violence (F1: 0.80 for physical violence; F1: 0.94 for verbal abuse) and communication failures (F1: 0.94) as a first step toward enabling automated labeling of safety event reports and ultimately improving workplace safety.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"74-83"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150719/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Safety event reporting forms a cornerstone of identifying and mitigating risks to patient and staff safety. However, variabilities in reporting and limited resources to analyze and classify event reports delay healthcare organizations' ability to rapidly identify safety event trends and to improve workplace safety. We demonstrated how large language models can classify safety event report narratives as workplace violence (F1: 0.80 for physical violence; F1: 0.94 for verbal abuse) and communication failures (F1: 0.94) as a first step toward enabling automated labeling of safety event reports and ultimately improving workplace safety.