Automatic Summarization of Doctor-Patient Encounter Dialogues Using Large Language Model through Prompt Tuning.

Mengxian Lyu, Cheng Peng, Xiaohan Li, Patrick Balian, Jiang Bian, Yonghui Wu
{"title":"Automatic Summarization of Doctor-Patient Encounter Dialogues Using Large Language Model through Prompt Tuning.","authors":"Mengxian Lyu, Cheng Peng, Xiaohan Li, Patrick Balian, Jiang Bian, Yonghui Wu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic text summarization (ATS) is an emerging technology to assist clinicians in providing continuous and coordinated care. This study presents an approach to summarize doctor-patient dialogues using generative large language models (LLMs). We developed prompt-tuning algorithms to instruct generative LLMs to summarize clinical text. We examined the prompt-tuning strategies, the size of soft prompts, and the few-short learning ability of GatorTronGPT, a generative clinical LLM developed using 277 billion clinical and general English words with up to 20 billion parameters. We compared GatorTronGPT with a previous solution based on fine-tuning of a widely used T5 model, using a clinical benchmark dataset MTS-DIALOG. The experimental results show that the GatorTronGPT-20B model achieved the best performance on all evaluation metrics. The proposed solution has a low computing cost as the LLM parameters are not updated during prompt-tuning. This study demonstrates the efficiency of generative clinical LLMs for clinical ATS through prompt tuning.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"342-349"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic text summarization (ATS) is an emerging technology to assist clinicians in providing continuous and coordinated care. This study presents an approach to summarize doctor-patient dialogues using generative large language models (LLMs). We developed prompt-tuning algorithms to instruct generative LLMs to summarize clinical text. We examined the prompt-tuning strategies, the size of soft prompts, and the few-short learning ability of GatorTronGPT, a generative clinical LLM developed using 277 billion clinical and general English words with up to 20 billion parameters. We compared GatorTronGPT with a previous solution based on fine-tuning of a widely used T5 model, using a clinical benchmark dataset MTS-DIALOG. The experimental results show that the GatorTronGPT-20B model achieved the best performance on all evaluation metrics. The proposed solution has a low computing cost as the LLM parameters are not updated during prompt-tuning. This study demonstrates the efficiency of generative clinical LLMs for clinical ATS through prompt tuning.

基于提示调优的大型语言模型的医患对话自动摘要。
自动文本摘要(ATS)是一项新兴的技术,以协助临床医生提供持续和协调的护理。本研究提出了一种使用生成式大语言模型(llm)来总结医患对话的方法。我们开发了提示调整算法来指导生成法学硕士总结临床文本。我们研究了GatorTronGPT的提示调整策略、软提示的大小和短时间学习能力。GatorTronGPT是一个生成式临床法学硕士,使用2770亿个临床和通用英语单词和多达200亿个参数开发而成。我们使用临床基准数据集MTS-DIALOG,将GatorTronGPT与先前基于广泛使用的T5模型微调的解决方案进行了比较。实验结果表明,GatorTronGPT-20B模型在所有评估指标上都取得了最好的性能。该方法在快速调优过程中不需要更新LLM参数,计算成本较低。本研究通过快速调整证明了生成型临床llm对临床ATS的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信