A Positionally Encoded Transformer for Monitoring Health Contexts of Hajj Pilgrims from Wearable Sensor Data.

Nazim A Belabbaci, Raphael Anaadumba, Mohammad Arif Ul Alam
{"title":"A Positionally Encoded Transformer for Monitoring Health Contexts of Hajj Pilgrims from Wearable Sensor Data.","authors":"Nazim A Belabbaci, Raphael Anaadumba, Mohammad Arif Ul Alam","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring the health of individuals during physically demanding tasks, such as the Hajj pilgrimage, requires robust methods for real-time detection of health-relevant contexts, including physical tiredness, emotional mood, and activity type. This paper introduces a positionally encoded Transformer model designed to detect these contexts from time-series data collected via wearable sensors. The model leverages Long Short-Term Memory (LSTM) for feature extraction and Transformer layers for context classification, utilizing positional encoding to capture the sequential dependencies within the sensor data. Our experiments, using data from 19 participants, show that the proposed model achieves high classification accuracy across multiple health-relevant contexts, significantly improving real-time health monitoring.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"84-94"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring the health of individuals during physically demanding tasks, such as the Hajj pilgrimage, requires robust methods for real-time detection of health-relevant contexts, including physical tiredness, emotional mood, and activity type. This paper introduces a positionally encoded Transformer model designed to detect these contexts from time-series data collected via wearable sensors. The model leverages Long Short-Term Memory (LSTM) for feature extraction and Transformer layers for context classification, utilizing positional encoding to capture the sequential dependencies within the sensor data. Our experiments, using data from 19 participants, show that the proposed model achieves high classification accuracy across multiple health-relevant contexts, significantly improving real-time health monitoring.

利用可穿戴传感器数据监测朝觐朝圣者健康状况的位置编码变压器。
在完成对体力要求很高的任务(如朝觐)期间监测个人的健康状况,需要强有力的方法来实时检测与健康相关的情况,包括身体疲劳、情绪情绪和活动类型。本文介绍了一种位置编码的Transformer模型,用于从可穿戴传感器收集的时间序列数据中检测这些上下文。该模型利用长短期记忆(LSTM)进行特征提取,利用Transformer层进行上下文分类,利用位置编码捕获传感器数据中的顺序依赖项。我们使用来自19个参与者的数据进行的实验表明,所提出的模型在多种健康相关背景下实现了很高的分类精度,显著提高了实时健康监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信