A Large-Language Model Framework for Relative Timeline Extraction from PubMed Case Reports.

Jing Wang, Jeremy C Weiss
{"title":"A Large-Language Model Framework for Relative Timeline Extraction from PubMed Case Reports.","authors":"Jing Wang, Jeremy C Weiss","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Timing of clinical events is central to characterization of patient trajectories, enabling analyses such as process tracing, forecasting, and causal reasoning. However, structured electronic health records capture few data elements critical to these tasks, while clinical reports lack temporal localization of events in structured form. We present a system that transforms case reports into textual time series-structured pairs of textual events and timestamps. We contrast manual and large language model (LLM) annotations (n=320 and n=390 respectively) of ten randomly-sampled PubMed open-access (PMOA) case reports (N=152,974) and assess inter-LLM agreement (n=3,103 N=93). We find that the LLM models have moderate event recall (O1-preview: 0.80) but high temporal concordance among identified events (O1-preview: 0.95). By establishing the task, annotation, and assessment systems, and by demonstrating high concordance, this work may serve as a benchmark for leveraging the PMOA corpus for temporal analytics. Code is available at:https://github.com/jcweiss2/LLM-Timeline-PMOA/.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2025 ","pages":"598-606"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150726/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Timing of clinical events is central to characterization of patient trajectories, enabling analyses such as process tracing, forecasting, and causal reasoning. However, structured electronic health records capture few data elements critical to these tasks, while clinical reports lack temporal localization of events in structured form. We present a system that transforms case reports into textual time series-structured pairs of textual events and timestamps. We contrast manual and large language model (LLM) annotations (n=320 and n=390 respectively) of ten randomly-sampled PubMed open-access (PMOA) case reports (N=152,974) and assess inter-LLM agreement (n=3,103 N=93). We find that the LLM models have moderate event recall (O1-preview: 0.80) but high temporal concordance among identified events (O1-preview: 0.95). By establishing the task, annotation, and assessment systems, and by demonstrating high concordance, this work may serve as a benchmark for leveraging the PMOA corpus for temporal analytics. Code is available at:https://github.com/jcweiss2/LLM-Timeline-PMOA/.

面向PubMed病例报告相对时间线提取的大语言模型框架。
临床事件的时间是表征患者轨迹的核心,可以进行过程跟踪、预测和因果推理等分析。然而,结构化的电子健康记录捕获的对这些任务至关重要的数据元素很少,而临床报告缺乏结构化形式的事件时间定位。我们提出了一个将案例报告转换为文本时间序列的系统——文本事件和时间戳的结构化对。我们对比了10个随机抽样的PubMed开放获取(PMOA)病例报告(n= 152,974)的手动和大型语言模型(LLM)注释(n=320和n=390),并评估了LLM间的一致性(n=3,103 n= 93)。我们发现LLM模型具有中等的事件回忆率(0 - 1预览:0.80),但识别事件之间的时间一致性较高(0 - 1预览:0.95)。通过建立任务、注释和评估系统,并通过展示高度的一致性,这项工作可以作为利用PMOA语料库进行时间分析的基准。代码可从https://github.com/jcweiss2/LLM-Timeline-PMOA/获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信