Edwin De Jesus Lopez Gonzalez , Seigmund Wai Tsuen Lai , Kelani Sun , Caree R. Carson , Carlos Hernandez-Castillo , Tala Zoukari , Kassandra Lopez , Jianying Zhang , Thomas Blevins , John Termini , Sarah C. Shuck
{"title":"Methylglyoxal-induced RNA modifications decrease RNA stability and translation and are associated with type 2 diabetes","authors":"Edwin De Jesus Lopez Gonzalez , Seigmund Wai Tsuen Lai , Kelani Sun , Caree R. Carson , Carlos Hernandez-Castillo , Tala Zoukari , Kassandra Lopez , Jianying Zhang , Thomas Blevins , John Termini , Sarah C. Shuck","doi":"10.1016/j.molmet.2025.102186","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Methylglyoxal (MG), a reactive aldehyde generated as a byproduct of glucose and lipid metabolism, is known to modify nucleic acids and proteins, altering their structure and function. While MG-induced DNA and protein adducts have been extensively studied and associated with type 2 diabetes (T2D) and its complications, the formation, biological relevance, and functional consequences of MG-induced RNA adducts remain poorly understood. This study aimed to define the chemical structures of MG-derived RNA adducts, assess their presence in clinical samples, and determine their impact on RNA stability and translation.</div></div><div><h3>Methods</h3><div>We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS), nuclear magnetic resonance (NMR), and other spectroscopic techniques to characterize MG-induced RNA adducts formed in vitro and in biological samples. RNA was isolated from cultured cells and clinical urine specimens from individuals with and without T2D. RNA stability and translation were assessed using firefly luciferase reporter mRNAs modified with MG in cell-based assays.</div></div><div><h3>Results</h3><div><em>In vitro</em> MG treatment resulted in the formation of an unstable product, tentatively identified as <em>N<sup>2</sup></em>-(1,2-dihydroxy-2-methyl)ethano-guanosine (cMG-guanosine), and two stable adducts: <em>N<sup>2</sup></em>-(1-carboxyethyl)-guanosine (CEG) and <em>N<sup>2</sup></em>-(1-carboxyethyl)-7–1-hydroxy-2-oxopropyl-guanosine (MG-CEG). In cellular RNA and urine from patients, only the stereoisomers of CEG were detected. CEG levels were significantly elevated in patients with T2D compared to controls and showed a stronger association with T2D than the DNA adduct <em>N<sup>2</sup></em>-(1-carboxyethyl)-deoxyguanosine (CEdG). Furthermore, CEG levels were higher in T2D patients who had developed complications compared to those without complications. Functionally, MG-modified luciferase mRNA exhibited decreased stability and reduced translational efficiency relative to unmodified mRNA.</div></div><div><h3>Conclusions</h3><div>This study provides the first structural and functional characterization of MG-induced RNA adducts and demonstrates their accumulation in individuals with T2D, particularly in those with disease complications. These findings highlight RNA MG-adducts as clinically relevant epitranscriptomic modifications that may contribute to RNA destabilization and impaired translation, suggesting a novel molecular mechanism by which metabolic stress may exacerbate disease progression.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"98 ","pages":"Article 102186"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877825000936","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Methylglyoxal (MG), a reactive aldehyde generated as a byproduct of glucose and lipid metabolism, is known to modify nucleic acids and proteins, altering their structure and function. While MG-induced DNA and protein adducts have been extensively studied and associated with type 2 diabetes (T2D) and its complications, the formation, biological relevance, and functional consequences of MG-induced RNA adducts remain poorly understood. This study aimed to define the chemical structures of MG-derived RNA adducts, assess their presence in clinical samples, and determine their impact on RNA stability and translation.
Methods
We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS), nuclear magnetic resonance (NMR), and other spectroscopic techniques to characterize MG-induced RNA adducts formed in vitro and in biological samples. RNA was isolated from cultured cells and clinical urine specimens from individuals with and without T2D. RNA stability and translation were assessed using firefly luciferase reporter mRNAs modified with MG in cell-based assays.
Results
In vitro MG treatment resulted in the formation of an unstable product, tentatively identified as N2-(1,2-dihydroxy-2-methyl)ethano-guanosine (cMG-guanosine), and two stable adducts: N2-(1-carboxyethyl)-guanosine (CEG) and N2-(1-carboxyethyl)-7–1-hydroxy-2-oxopropyl-guanosine (MG-CEG). In cellular RNA and urine from patients, only the stereoisomers of CEG were detected. CEG levels were significantly elevated in patients with T2D compared to controls and showed a stronger association with T2D than the DNA adduct N2-(1-carboxyethyl)-deoxyguanosine (CEdG). Furthermore, CEG levels were higher in T2D patients who had developed complications compared to those without complications. Functionally, MG-modified luciferase mRNA exhibited decreased stability and reduced translational efficiency relative to unmodified mRNA.
Conclusions
This study provides the first structural and functional characterization of MG-induced RNA adducts and demonstrates their accumulation in individuals with T2D, particularly in those with disease complications. These findings highlight RNA MG-adducts as clinically relevant epitranscriptomic modifications that may contribute to RNA destabilization and impaired translation, suggesting a novel molecular mechanism by which metabolic stress may exacerbate disease progression.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.