Ultra-wide-field fundus photography and AI-based screening and referral for multiple ocular fundus diseases.

IF 11.7 1区 医学 Q1 CELL BIOLOGY
Cell Reports Medicine Pub Date : 2025-06-17 Epub Date: 2025-06-10 DOI:10.1016/j.xcrm.2025.102187
Xinyu Zhao, Xingwang Gu, Da Teng, Xiaolei Sun, Qijie Wei, Bo Wang, Jinrui Wang, Jianchun Zhao, Dayong Ding, Bilei Zhang, Yuelin Wang, Wenfei Zhang, Shiyu Cheng, Xinyu Liu, Lihui Meng, Bing Li, Xiao Zhang, Zhengming Shi, Anyi Liang, Guofang Jiao, Huiqin Lu, Changzheng Chen, Rishet Ahmat, Hao Zhang, Yakun Li, Dan Zhu, Han Zhang, Hongbin Lv, Donglei Zhang, Mengda Li, Ziwu Zhang, Ling Yuan, Chang Su, Dawei Sun, Qiuming Li, Dawa Xiao, Youxin Chen
{"title":"Ultra-wide-field fundus photography and AI-based screening and referral for multiple ocular fundus diseases.","authors":"Xinyu Zhao, Xingwang Gu, Da Teng, Xiaolei Sun, Qijie Wei, Bo Wang, Jinrui Wang, Jianchun Zhao, Dayong Ding, Bilei Zhang, Yuelin Wang, Wenfei Zhang, Shiyu Cheng, Xinyu Liu, Lihui Meng, Bing Li, Xiao Zhang, Zhengming Shi, Anyi Liang, Guofang Jiao, Huiqin Lu, Changzheng Chen, Rishet Ahmat, Hao Zhang, Yakun Li, Dan Zhu, Han Zhang, Hongbin Lv, Donglei Zhang, Mengda Li, Ziwu Zhang, Ling Yuan, Chang Su, Dawei Sun, Qiuming Li, Dawa Xiao, Youxin Chen","doi":"10.1016/j.xcrm.2025.102187","DOIUrl":null,"url":null,"abstract":"<p><p>To address the difficulty in comprehensive screening of fundus diseases, we develop three deep learning algorithms (DLAs) based on different algorithms (Swin Transformer and cross-domain collaborative learning [CdCL]) and imaging modalities (ultra-wide-field [UWF] images and the cropped posterior-pole-region [PPR] images) to identify 25 fundus conditions and provide referral suggestions: WARM (CdCL + UWF images), BASE (Swin Transformer + UWF images), and WARM-PPR (CdCL + PPR images). 59,475 UWF images are included to establish internal and external datasets. WARM shows the best performance on the internal test (area under the receiver operating characteristic curve [AUC] for screening = 0.915; AUC for referral = 0.911) and the external multi-center test (AUC for screening = 0.912; AUC for referral = 0.902). UWF images and the CdCL approach significantly enhance the DLA's ability to detect abnormalities in the peripheral retina. The WARM model shows promise as a reliable and accurate tool for comprehensive fundus screening on a large scale.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102187"},"PeriodicalIF":11.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102187","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the difficulty in comprehensive screening of fundus diseases, we develop three deep learning algorithms (DLAs) based on different algorithms (Swin Transformer and cross-domain collaborative learning [CdCL]) and imaging modalities (ultra-wide-field [UWF] images and the cropped posterior-pole-region [PPR] images) to identify 25 fundus conditions and provide referral suggestions: WARM (CdCL + UWF images), BASE (Swin Transformer + UWF images), and WARM-PPR (CdCL + PPR images). 59,475 UWF images are included to establish internal and external datasets. WARM shows the best performance on the internal test (area under the receiver operating characteristic curve [AUC] for screening = 0.915; AUC for referral = 0.911) and the external multi-center test (AUC for screening = 0.912; AUC for referral = 0.902). UWF images and the CdCL approach significantly enhance the DLA's ability to detect abnormalities in the peripheral retina. The WARM model shows promise as a reliable and accurate tool for comprehensive fundus screening on a large scale.

超宽视场眼底摄影和基于人工智能的多种眼底疾病筛查和转诊。
为了解决眼底疾病综合筛查的困难,我们基于不同的算法(Swin Transformer和跨域协同学习[CdCL])和成像方式(超宽视场[UWF]图像和裁剪后极区[PPR]图像)开发了三种深度学习算法(DLAs),识别25种眼底疾病并提供转诊建议:WARM (CdCL + UWF图像)、BASE (Swin Transformer + UWF图像)和WARM-PPR (CdCL + PPR图像)。包括59,475张UWF图像,以建立内部和外部数据集。WARM在内测中表现最佳(筛选时受者工作特性曲线下面积[AUC] = 0.915;转诊的AUC = 0.911)和外部多中心试验(筛选的AUC = 0.912;转诊AUC = 0.902)。UWF图像和CdCL入路显著增强了DLA检测外周视网膜异常的能力。WARM模型有望成为一种可靠、准确的大规模全面眼底筛查工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信