Marie Brajerova, Otakar Nyc, Pavel Drevinek, Marcela Krutova
{"title":"Genomic insights into the spread of vancomycin- and tigecycline-resistant Enterococcus faecium ST117.","authors":"Marie Brajerova, Otakar Nyc, Pavel Drevinek, Marcela Krutova","doi":"10.1186/s12941-025-00806-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Since the incidence of vancomycin-resistant enterococci (VRE) is increasing and treatment options remain limited, we aimed to investigate the epidemiology of vancomycin- and tigecycline-resistant enterococci in a university hospital using whole genome sequencing (WGS).</p><p><strong>Methods: </strong>Between April and December 2021, 102 VRE isolates were collected from a single tertiary care hospital in the Czech Republic. Forty selected isolates underwent antimicrobial susceptibility testing and WGS (Illumina short reads and long reads with MinION in selected isolates).</p><p><strong>Results: </strong>All Enterococcus faecium isolates were resistant to ampicillin, carrying the PBP5_Met485Ala, PBP5_Glu629Val, and fluoroquinolones carrying the GyrA_Ser83Ile and ParC_Ser80Ile substitutions. The vanA operon was found on pELF2-like plasmids and plasmids carrying rep17 and/or rep18b genes. The novel Tn1546 structural variants were identified in vanA-carrying isolates. The vanB operon was located on the chromosome within a Tn1549 structural variant. Linezolid resistance was detected in one isolate carrying the 23S rDNA_G2576T substitution. Twenty-two isolates were resistant to tigecycline (tet(L), tet(M) and rpsJ_del 155-166 or RpsJ_Lys57Arg). Discrepancies between phenotypic and genotypic resistance profiles were observed for daptomycin (RpoB_Ser491Phe), trimethoprim/sulfamethoxazole (dfrG gene), nitrofurantoin (NmrA_Gln48Lys substitution without the EF0404 and EF0648 genes) and tetracycline (truncated TetM). The two multilocus sequence typing (MLST) schemes identified different numbers of STs: 5 STs, with ST117 as the predominant one (n = 32, 80%), versus 10 STs, with ST138 (27.5%), ST136 (25%), and ST1067 (20%) being the most frequent, respectively. The whole genome MLST revealed clonal clustering (0-7 allele differences) among isolates of the same ST. When comparing ST117 isolates from our study with 2,204 ST117 isolates from 15 countries, only one Czech isolate clustered closely with strains from Germany and the Netherlands, differing by just 16 alleles.</p><p><strong>Conclusions: </strong>The spread of E. faecium isolates ST117 resistant to vancomycin and tigecycline was identified. The discrepancies between resistance genotypes and phenotypes highlight the importance of combining molecular and phenotypic surveillance in antimicrobial resistance monitoring.</p>","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":"24 1","pages":"36"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153105/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical Microbiology and Antimicrobials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12941-025-00806-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Since the incidence of vancomycin-resistant enterococci (VRE) is increasing and treatment options remain limited, we aimed to investigate the epidemiology of vancomycin- and tigecycline-resistant enterococci in a university hospital using whole genome sequencing (WGS).
Methods: Between April and December 2021, 102 VRE isolates were collected from a single tertiary care hospital in the Czech Republic. Forty selected isolates underwent antimicrobial susceptibility testing and WGS (Illumina short reads and long reads with MinION in selected isolates).
Results: All Enterococcus faecium isolates were resistant to ampicillin, carrying the PBP5_Met485Ala, PBP5_Glu629Val, and fluoroquinolones carrying the GyrA_Ser83Ile and ParC_Ser80Ile substitutions. The vanA operon was found on pELF2-like plasmids and plasmids carrying rep17 and/or rep18b genes. The novel Tn1546 structural variants were identified in vanA-carrying isolates. The vanB operon was located on the chromosome within a Tn1549 structural variant. Linezolid resistance was detected in one isolate carrying the 23S rDNA_G2576T substitution. Twenty-two isolates were resistant to tigecycline (tet(L), tet(M) and rpsJ_del 155-166 or RpsJ_Lys57Arg). Discrepancies between phenotypic and genotypic resistance profiles were observed for daptomycin (RpoB_Ser491Phe), trimethoprim/sulfamethoxazole (dfrG gene), nitrofurantoin (NmrA_Gln48Lys substitution without the EF0404 and EF0648 genes) and tetracycline (truncated TetM). The two multilocus sequence typing (MLST) schemes identified different numbers of STs: 5 STs, with ST117 as the predominant one (n = 32, 80%), versus 10 STs, with ST138 (27.5%), ST136 (25%), and ST1067 (20%) being the most frequent, respectively. The whole genome MLST revealed clonal clustering (0-7 allele differences) among isolates of the same ST. When comparing ST117 isolates from our study with 2,204 ST117 isolates from 15 countries, only one Czech isolate clustered closely with strains from Germany and the Netherlands, differing by just 16 alleles.
Conclusions: The spread of E. faecium isolates ST117 resistant to vancomycin and tigecycline was identified. The discrepancies between resistance genotypes and phenotypes highlight the importance of combining molecular and phenotypic surveillance in antimicrobial resistance monitoring.
期刊介绍:
Annals of Clinical Microbiology and Antimicrobials considers good quality, novel and international research of more than regional relevance. Research must include epidemiological and/or clinical information about isolates, and the journal covers the clinical microbiology of bacteria, viruses and fungi, as well as antimicrobial treatment of infectious diseases.
Annals of Clinical Microbiology and Antimicrobials is an open access, peer-reviewed journal focusing on information concerning clinical microbiology, infectious diseases and antimicrobials. The management of infectious disease is dependent on correct diagnosis and appropriate antimicrobial treatment, and with this in mind, the journal aims to improve the communication between laboratory and clinical science in the field of clinical microbiology and antimicrobial treatment. Furthermore, the journal has no restrictions on space or access; this ensures that the journal can reach the widest possible audience.