Modeling Protein Aggregation Kinetics from NMR Data.

IF 4.5 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vitali Tugarinov, Francesco Torricella, Shreya Ghosh, G Marius Clore
{"title":"Modeling Protein Aggregation Kinetics from NMR Data.","authors":"Vitali Tugarinov, Francesco Torricella, Shreya Ghosh, G Marius Clore","doi":"10.1016/j.jmb.2025.169269","DOIUrl":null,"url":null,"abstract":"<p><p>We provide an overview of the practical aspects of using NMR spectroscopy to follow the time course of protein fibril formation (aggregation) and quantitatively model the kinetics of aggregation processes. Following a brief survey of the theoretical foundations of the kinetics of protein aggregation and its inhibition, the modeling of aggregation kinetics, from data acquired by a series of fast two-dimensional <sup>1</sup>H-<sup>15</sup>N correlation NMR spectra, is described. Examples are drawn from our recent NMR-based studies of (1) the aggregation kinetics of a pathogenic huntingtin exon-1 protein whose fibrillization in neurons is responsible for Huntington's disease, and (2) the kinetics of amyloid β42 fibril formation and the mechanism of its inhibition by the chaperone Hsp104.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169269"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235721/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169269","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We provide an overview of the practical aspects of using NMR spectroscopy to follow the time course of protein fibril formation (aggregation) and quantitatively model the kinetics of aggregation processes. Following a brief survey of the theoretical foundations of the kinetics of protein aggregation and its inhibition, the modeling of aggregation kinetics, from data acquired by a series of fast two-dimensional 1H-15N correlation NMR spectra, is described. Examples are drawn from our recent NMR-based studies of (1) the aggregation kinetics of a pathogenic huntingtin exon-1 protein whose fibrillization in neurons is responsible for Huntington's disease, and (2) the kinetics of amyloid β42 fibril formation and the mechanism of its inhibition by the chaperone Hsp104.

从核磁共振数据建模蛋白质聚集动力学。
我们提供了一个实用方面的概述,使用核磁共振波谱跟踪蛋白质纤维的形成(聚集)的时间过程和定量模型的动力学聚集过程。在简要介绍了蛋白质聚集及其抑制动力学的理论基础之后,描述了通过一系列快速二维h - 15n相关NMR谱获得的数据来建立聚集动力学的模型。例子来自我们最近基于核磁共振的研究:(1)致病性亨廷顿蛋白外显子-1蛋白的聚集动力学,其在神经元中的纤化是亨廷顿氏病的原因;(2)淀粉样蛋白β42纤维形成的动力学及其被伴侣蛋白Hsp104抑制的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信