Asrin Emami, Seyed Hadi Kalantar, Asma Mafhumi, Hiva Saffar, Iman Menbari Oskouie
{"title":"Evaluation of Radius Fracture Repair With Critical-Sized Bone Defects Using Polypropylene Surgical Mesh in Rats.","authors":"Asrin Emami, Seyed Hadi Kalantar, Asma Mafhumi, Hiva Saffar, Iman Menbari Oskouie","doi":"10.1155/aort/7262524","DOIUrl":null,"url":null,"abstract":"<p><p>Bone fractures involving critical-sized defects pose a significant challenge in orthopedic surgery, often requiring innovative strategies to promote bone regeneration. This study aimed to evaluate the effectiveness of polypropylene surgical mesh in repairing critical-sized radius bone defects in a rat model. Treatments included autologous grafts and a combination of mesh and graft, compared with an untreated control group. After 6 weeks, X-ray and CT scan analyses revealed significant bone healing and callus formation in the treated groups, with the graft + mesh group showing the most pronounced improvement. Histomorphometric analyses demonstrated that the mesh scaffold significantly enhanced new bone formation, osteoblast and osteocyte counts, and bone microarchitecture compared with grafts alone. These findings suggest that mesh scaffolds offer superior osteogenic potential and could provide a promising adjunct for treating critical-sized bone defects. Future studies should explore optimized mesh designs and the interplay between osteogenesis and angiogenesis to improve clinical outcomes.</p>","PeriodicalId":7358,"journal":{"name":"Advances in Orthopedics","volume":"2025 ","pages":"7262524"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158591/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Orthopedics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/aort/7262524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bone fractures involving critical-sized defects pose a significant challenge in orthopedic surgery, often requiring innovative strategies to promote bone regeneration. This study aimed to evaluate the effectiveness of polypropylene surgical mesh in repairing critical-sized radius bone defects in a rat model. Treatments included autologous grafts and a combination of mesh and graft, compared with an untreated control group. After 6 weeks, X-ray and CT scan analyses revealed significant bone healing and callus formation in the treated groups, with the graft + mesh group showing the most pronounced improvement. Histomorphometric analyses demonstrated that the mesh scaffold significantly enhanced new bone formation, osteoblast and osteocyte counts, and bone microarchitecture compared with grafts alone. These findings suggest that mesh scaffolds offer superior osteogenic potential and could provide a promising adjunct for treating critical-sized bone defects. Future studies should explore optimized mesh designs and the interplay between osteogenesis and angiogenesis to improve clinical outcomes.
期刊介绍:
Advances in Orthopedics is a peer-reviewed, Open Access journal that provides a forum for orthopaedics working on improving the quality of orthopedic health care. The journal publishes original research articles, review articles, and clinical studies related to arthroplasty, hand surgery, limb reconstruction, pediatric orthopaedics, sports medicine, trauma, spinal deformities, and orthopaedic oncology.