{"title":"Suppressed Nonradiative Recombination in 2D Reduced- Graphene- Oxide (rGO)-Wrapped 3D MoS2 Microflower","authors":"Sumit Majumder, Pronoy Nandi, Abhijit Roy, Dinesh Topwal","doi":"10.1002/cptc.202400356","DOIUrl":null,"url":null,"abstract":"<p>We present a comprehensive study on the synthesis and characterization of 2D reduced graphene oxide (rGO) encapsulated 3D Molybdenum disulfide (MoS<sub>2</sub>) nanocomposites, a promising semiconductor material with applications spanning electronic and optoelectronic domains. Through a facile two-step chemical synthesis, we successfully fabricated both pristine MoS<sub>2</sub> (denoted as S1) and MoS<sub>2</sub>-rGO composites (termed S2), yielding distinctive flower-like microspheres comprised of folded nanosheets. Our temperature-dependent PL investigations unveiled pronounced mid-gap emission peaks within the UV (380–468 nm) and visible (490–550 nm) regions, indicative of excitonic behavior. Notably, the S2 composite exhibited enhanced PL intensity and extended carrier lifetimes across all studied temperatures, attributed to effective suppression of surface states via d-electron hopping. Complementary high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses further corroborated the presence of surface defects and d-electron hopping mechanisms, elucidating their pivotal roles in enhancing PL emission characteristics. This study offers valuable insights into the fundamental properties of MoS<sub>2</sub>-rGO nanocomposites, paving the way for tailored device design and applications.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400356","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400356","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present a comprehensive study on the synthesis and characterization of 2D reduced graphene oxide (rGO) encapsulated 3D Molybdenum disulfide (MoS2) nanocomposites, a promising semiconductor material with applications spanning electronic and optoelectronic domains. Through a facile two-step chemical synthesis, we successfully fabricated both pristine MoS2 (denoted as S1) and MoS2-rGO composites (termed S2), yielding distinctive flower-like microspheres comprised of folded nanosheets. Our temperature-dependent PL investigations unveiled pronounced mid-gap emission peaks within the UV (380–468 nm) and visible (490–550 nm) regions, indicative of excitonic behavior. Notably, the S2 composite exhibited enhanced PL intensity and extended carrier lifetimes across all studied temperatures, attributed to effective suppression of surface states via d-electron hopping. Complementary high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses further corroborated the presence of surface defects and d-electron hopping mechanisms, elucidating their pivotal roles in enhancing PL emission characteristics. This study offers valuable insights into the fundamental properties of MoS2-rGO nanocomposites, paving the way for tailored device design and applications.
ChemPhotoChemChemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍:
Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science.
We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.