On buffered moving average models

IF 1 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yipeng Zhuang, Dong Li, Philip L. H. Yu, Wai Keung Li
{"title":"On buffered moving average models","authors":"Yipeng Zhuang,&nbsp;Dong Li,&nbsp;Philip L. H. Yu,&nbsp;Wai Keung Li","doi":"10.1111/jtsa.12778","DOIUrl":null,"url":null,"abstract":"<p>There has been growing interest in extending the popular threshold time series models to include a buffer zone for regime transition. However, almost all attention has been on buffered autoregressive models. Note that the classical moving average (MA) model plays an equally important role as the autoregressive model in classical time series analysis. It is therefore natural to extend our investigation to the buffered MA (BMA) model. We focus on the first-order BMA model while extending to more general MA model should be direct in principle. The proposed model shares the piecewise linear structure of the threshold model, but has a more flexible regime switching mechanism. Its probabilistic structure is studied to some extent. A nonlinear least squares estimation procedure is proposed. Under some standard regularity conditions, the estimator is strongly consistent and the estimator of the coefficients is asymptotically normal when the parameter of the boundary of the buffer zone is known. A portmanteau goodness-of-fit test is derived. Simulation results and empirical examples are carried out and lend further support to the usefulness of the BMA model and the asymptotic results.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"46 4","pages":"599-622"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12778","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

There has been growing interest in extending the popular threshold time series models to include a buffer zone for regime transition. However, almost all attention has been on buffered autoregressive models. Note that the classical moving average (MA) model plays an equally important role as the autoregressive model in classical time series analysis. It is therefore natural to extend our investigation to the buffered MA (BMA) model. We focus on the first-order BMA model while extending to more general MA model should be direct in principle. The proposed model shares the piecewise linear structure of the threshold model, but has a more flexible regime switching mechanism. Its probabilistic structure is studied to some extent. A nonlinear least squares estimation procedure is proposed. Under some standard regularity conditions, the estimator is strongly consistent and the estimator of the coefficients is asymptotically normal when the parameter of the boundary of the buffer zone is known. A portmanteau goodness-of-fit test is derived. Simulation results and empirical examples are carried out and lend further support to the usefulness of the BMA model and the asymptotic results.

在缓冲移动平均模型上
人们对扩展流行的阈值时间序列模型越来越感兴趣,以包括政权过渡的缓冲区。然而,几乎所有的注意力都集中在缓冲自回归模型上。值得注意的是,在经典时间序列分析中,经典移动平均(MA)模型与自回归模型具有同等重要的作用。因此,将我们的研究扩展到缓冲MA (BMA)模型是很自然的。我们主要研究一阶BMA模型,而扩展到更一般的MA模型原则上应该是直接的。该模型具有阈值模型的分段线性结构,但具有更灵活的状态切换机制。对其概率结构进行了一定程度的研究。提出了一种非线性最小二乘估计方法。在一些标准正则性条件下,当缓冲区边界参数已知时,估计量是强相合的,系数的估计量是渐近正态的。导出了一个组合拟合优度检验。仿真结果和实例进一步证明了BMA模型和渐近结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Time Series Analysis
Journal of Time Series Analysis 数学-数学跨学科应用
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering. The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信