Two approaches to mass closure analysis for carbon-rich aerosol in Metro Manila, Philippines†

IF 3.5 Q3 ENVIRONMENTAL SCIENCES
Grace Betito, Grethyl Catipay-Jamero, Honey Alas, Wolfram Birmili, Maria Obiminda Cambaliza, Mylene Cayetano, David Cohen, Melliza Cruz, Maria Cecilia Galvez, Arvin Jagonoy, Simonas Kecorius, Genevieve Rose Lorenzo, Leizel Madueño, Thomas Müller, Preciosa Corazon Pabroa, James Bernard Simpas, Armin Sorooshian, Everlyn Gayle Tamayo, Edgar Vallar, Kay Weinhold and Alfred Wiedensohler
{"title":"Two approaches to mass closure analysis for carbon-rich aerosol in Metro Manila, Philippines†","authors":"Grace Betito, Grethyl Catipay-Jamero, Honey Alas, Wolfram Birmili, Maria Obiminda Cambaliza, Mylene Cayetano, David Cohen, Melliza Cruz, Maria Cecilia Galvez, Arvin Jagonoy, Simonas Kecorius, Genevieve Rose Lorenzo, Leizel Madueño, Thomas Müller, Preciosa Corazon Pabroa, James Bernard Simpas, Armin Sorooshian, Everlyn Gayle Tamayo, Edgar Vallar, Kay Weinhold and Alfred Wiedensohler","doi":"10.1039/D5EA00028A","DOIUrl":null,"url":null,"abstract":"<p >In this paper, we investigate physico-chemical properties of particulate matter (PM) at an urban mixed site (UB) and two roadside (RS) sites during the 2015 Metro Manila Aerosol Characterization Experiment (MACE). Aerosol particle number size distributions (0.01–10 μm diameter) were measured using a combination of a mobility particle size spectrometer and aerodynamic particle size spectrometers. PM<small><sub>2.5</sub></small> filter samples were analyzed for total mass, organic carbon (OC), elemental carbon (EC), water-soluble inorganic ions, and elemental species. Mass closure between the gravimetric mass, chemical composition, and mass concentration derived from the number size distribution was performed. We found that the bulk PM<small><sub>2.5</sub></small> mass was dominated by carbonaceous materials, followed by secondary inorganic aerosols and crustal matter at all sites. The average OC/EC ratios at the RS sites (0.16–1.15) suggest that a major fraction of the aerosol mass at these sites derives from traffic sources, while the OC/EC ratio at the UB site (2.92) is indicative of a more aged aerosol, consistent with greater contribution from secondary organic carbon (SOC) formation. The ultrafine particles (UFPs, diameter &lt; 100 nm) dominated (89–95%) the total particle number concentration at the three sites, highlighting the importance of such measurements in this region. However, UFPs have low mass contribution to PM<small><sub>2.5</sub></small> (7–18%), while particles in the accumulation mode (diameter 100–1000 nm) accounted for most of the number-derived PM<small><sub>2.5</sub></small> mass concentration (61–67%). On average, strong agreement between the chemically-derived mass and the gravimetric mass was found (slope = 1.02; <em>r</em><small><sup>2</sup></small> = 0.94). The number-derived mass concentration correlated well with the gravimetric PM<small><sub>2.5</sub></small> mass (slope = 1.06; <em>r</em><small><sup>2</sup></small> = 0.81). These results highlight the need for more comprehensive PM characterization, particularly focusing on size-resolved chemical composition and particle number size distributions. The mass closure approach presented in this work provides a framework for a conversion between number size distributions and PM<small><sub>2.5</sub></small> mass concentration in real time in an environment with similar characteristics.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 6","pages":" 714-728"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d5ea00028a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00028a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate physico-chemical properties of particulate matter (PM) at an urban mixed site (UB) and two roadside (RS) sites during the 2015 Metro Manila Aerosol Characterization Experiment (MACE). Aerosol particle number size distributions (0.01–10 μm diameter) were measured using a combination of a mobility particle size spectrometer and aerodynamic particle size spectrometers. PM2.5 filter samples were analyzed for total mass, organic carbon (OC), elemental carbon (EC), water-soluble inorganic ions, and elemental species. Mass closure between the gravimetric mass, chemical composition, and mass concentration derived from the number size distribution was performed. We found that the bulk PM2.5 mass was dominated by carbonaceous materials, followed by secondary inorganic aerosols and crustal matter at all sites. The average OC/EC ratios at the RS sites (0.16–1.15) suggest that a major fraction of the aerosol mass at these sites derives from traffic sources, while the OC/EC ratio at the UB site (2.92) is indicative of a more aged aerosol, consistent with greater contribution from secondary organic carbon (SOC) formation. The ultrafine particles (UFPs, diameter < 100 nm) dominated (89–95%) the total particle number concentration at the three sites, highlighting the importance of such measurements in this region. However, UFPs have low mass contribution to PM2.5 (7–18%), while particles in the accumulation mode (diameter 100–1000 nm) accounted for most of the number-derived PM2.5 mass concentration (61–67%). On average, strong agreement between the chemically-derived mass and the gravimetric mass was found (slope = 1.02; r2 = 0.94). The number-derived mass concentration correlated well with the gravimetric PM2.5 mass (slope = 1.06; r2 = 0.81). These results highlight the need for more comprehensive PM characterization, particularly focusing on size-resolved chemical composition and particle number size distributions. The mass closure approach presented in this work provides a framework for a conversion between number size distributions and PM2.5 mass concentration in real time in an environment with similar characteristics.

Abstract Image

菲律宾马尼拉大都会富碳气溶胶质量封闭分析的两种方法
在本文中,我们研究了2015年马尼拉大都会气溶胶表征实验(MACE)期间城市混合站点(UB)和两个路边站点(RS)的颗粒物(PM)的物理化学性质。采用迁移度粒径谱仪和气动粒径谱仪组合测量了0.01 ~ 10 μm直径范围内的气溶胶粒径分布。分析PM2.5过滤样品的总质量、有机碳(OC)、元素碳(EC)、水溶性无机离子和元素种类。质量封闭之间的重量质量,化学成分,和质量浓度从数字大小分布进行。PM2.5总体质量以碳质物质为主,其次是次生无机气溶胶和地壳物质。RS站点的平均OC/EC比值(0.16 ~ 1.15)表明这些站点的气溶胶质量的主要部分来自交通源,而UB站点的OC/EC比值(2.92)表明气溶胶的年龄更大,与二次有机碳(SOC)形成的贡献更大一致。超细颗粒(ufp,直径<;100 nm)在三个位点的总粒子数浓度中占主导地位(89-95%),突出了这一测量在该地区的重要性。然而,ufp对PM2.5的质量贡献较低(7-18%),而累积模式(直径100-1000 nm)的颗粒占PM2.5质量浓度的大部分(61-67%)。平均而言,化学推导质量与重力质量之间的一致性很强(斜率= 1.02;R2 = 0.94)。数值推导的质量浓度与PM2.5的重力质量具有良好的相关性(斜率= 1.06;R2 = 0.81)。这些结果强调需要更全面的PM表征,特别是关注尺寸分辨的化学成分和颗粒数尺寸分布。本研究中提出的质量闭合方法为具有相似特征的环境中数值大小分布和PM2.5质量浓度之间的实时转换提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信