Markus Thoma, Franziska Bachmeier, Karina Knauf, Julia David, Mario Simon and Alexander L. Vogel
{"title":"Seasonal analysis of organic aerosol composition resolves anthropogenic and biogenic sources at a rural background station in central Europe†","authors":"Markus Thoma, Franziska Bachmeier, Karina Knauf, Julia David, Mario Simon and Alexander L. Vogel","doi":"10.1039/D4EA00163J","DOIUrl":null,"url":null,"abstract":"<p >Organic aerosol (OA) has a significant impact on Earth's climate and human health, while its chemical composition remains largely unknown. A detailed analysis of the chemical composition of particulate matter (PM) can identify origins, sources and transformation pathways and reveal mitigation potential for the anthropogenic organic fraction. Here, we follow a top-down molecular resolution approach of source attribution of organic compounds in PM<small><sub>2.5</sub></small> at a rural background station in central Europe. One year of PM filters were measured using ultra-high-performance liquid chromatography coupled to electrospray ionisation high-resolution Orbitrap mass spectrometry. Non-target analysis detected over 6000 compounds, which hierarchical cluster analysis separated into a biogenic and an anthropogenic compound cluster. Compounds of the biogenic cluster make up a large part of SOA during summer, indicating strong local influence by the vegetation. Anthropogenic compounds are relatively enriched during colder conditions, with temporarily strong transport of air pollution. Concentration-weighted trajectories show the air mass origins of these pollution events and allow for an interpretation of potential sources.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 6","pages":" 703-713"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d4ea00163j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d4ea00163j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Organic aerosol (OA) has a significant impact on Earth's climate and human health, while its chemical composition remains largely unknown. A detailed analysis of the chemical composition of particulate matter (PM) can identify origins, sources and transformation pathways and reveal mitigation potential for the anthropogenic organic fraction. Here, we follow a top-down molecular resolution approach of source attribution of organic compounds in PM2.5 at a rural background station in central Europe. One year of PM filters were measured using ultra-high-performance liquid chromatography coupled to electrospray ionisation high-resolution Orbitrap mass spectrometry. Non-target analysis detected over 6000 compounds, which hierarchical cluster analysis separated into a biogenic and an anthropogenic compound cluster. Compounds of the biogenic cluster make up a large part of SOA during summer, indicating strong local influence by the vegetation. Anthropogenic compounds are relatively enriched during colder conditions, with temporarily strong transport of air pollution. Concentration-weighted trajectories show the air mass origins of these pollution events and allow for an interpretation of potential sources.