Exploring community pharmacist's psychological intentions to adopt generative artificial intelligence (GenAI) chatbots for patient information, education, and counseling
Hafidz Ihsan Hidayatullah , Muhammad Taufiq Saifullah , Muhammad Thesa Ghozali , Ayesha Aziz
{"title":"Exploring community pharmacist's psychological intentions to adopt generative artificial intelligence (GenAI) chatbots for patient information, education, and counseling","authors":"Hafidz Ihsan Hidayatullah , Muhammad Taufiq Saifullah , Muhammad Thesa Ghozali , Ayesha Aziz","doi":"10.1016/j.neuri.2025.100213","DOIUrl":null,"url":null,"abstract":"<div><div>Generative AI (GenAI) chatbots, driven by advanced machine learning algorithms, are emerging as transformative tools for enhancing patient education, information dissemination, and counseling (EIC) in healthcare. This study investigated the psychological determinants of community pharmacists' intentions to adopt GenAI chatbots using the Extended Technology Acceptance Model (ETAM). A cross-sectional survey of 240 licensed community pharmacists across several Indonesian provinces assessed key constructs, including self-efficacy (SE), perceived usefulness (PU), perceived ease of use (PEU), attitude toward technology (ATT), trust (TT), and behavioral intention (BI). Structural equation modeling revealed that SE significantly influenced PU (<span><math><mi>β</mi><mo>=</mo><mn>0.37</mn></math></span>) and PEU (<span><math><mi>β</mi><mo>=</mo><mn>0.57</mn></math></span>), indicating that confidence in using technology positively affects perceived utility and usability. PU further predicted ATT (<span><math><mi>β</mi><mo>=</mo><mn>0.39</mn></math></span>) and BI (<span><math><mi>β</mi><mo>=</mo><mn>0.236</mn></math></span>), emphasizing the motivational role of perceived benefits. Trust emerged as a crucial mediator, channeling favorable attitudes into actionable behavioral intentions (indirect <span><math><mi>β</mi><mo>=</mo><mn>0.148</mn></math></span>). The model demonstrated strong fit indices (<span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>263.09</mn></math></span>, RMSEA = 0.019, GFI = 0.915, CFI = 0.991), supporting the psychological framework. These findings highlight the importance of fostering trust, improving perceived usability, and enhancing self-efficacy through targeted training to promote GenAI chatbot adoption. Future research should explore longitudinal behavioral changes and contextual influences to support sustainable AI integration in pharmacy practice.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 3","pages":"Article 100213"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Generative AI (GenAI) chatbots, driven by advanced machine learning algorithms, are emerging as transformative tools for enhancing patient education, information dissemination, and counseling (EIC) in healthcare. This study investigated the psychological determinants of community pharmacists' intentions to adopt GenAI chatbots using the Extended Technology Acceptance Model (ETAM). A cross-sectional survey of 240 licensed community pharmacists across several Indonesian provinces assessed key constructs, including self-efficacy (SE), perceived usefulness (PU), perceived ease of use (PEU), attitude toward technology (ATT), trust (TT), and behavioral intention (BI). Structural equation modeling revealed that SE significantly influenced PU () and PEU (), indicating that confidence in using technology positively affects perceived utility and usability. PU further predicted ATT () and BI (), emphasizing the motivational role of perceived benefits. Trust emerged as a crucial mediator, channeling favorable attitudes into actionable behavioral intentions (indirect ). The model demonstrated strong fit indices (, RMSEA = 0.019, GFI = 0.915, CFI = 0.991), supporting the psychological framework. These findings highlight the importance of fostering trust, improving perceived usability, and enhancing self-efficacy through targeted training to promote GenAI chatbot adoption. Future research should explore longitudinal behavioral changes and contextual influences to support sustainable AI integration in pharmacy practice.
Neuroscience informaticsSurgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology