Yifan Wang , Fan Zhang , Qihao Zhao , Wei Hu , Fei Ma
{"title":"DMRS: Long-tailed remote sensing recognition via semantic-aware mixing and diversity experts","authors":"Yifan Wang , Fan Zhang , Qihao Zhao , Wei Hu , Fei Ma","doi":"10.1016/j.jag.2025.104623","DOIUrl":null,"url":null,"abstract":"<div><div>Long-tailed class distributions pose a significant challenge in remote sensing scene recognition, where certain scene categories appear far less frequently than others. However, existing long-tailed learning approaches often overlook the unique spatial hierarchies and contextual semantic relationships inherent in remote sensing imagery, limiting their effectiveness in this domain. To address this, we propose Diversity-Mix Remote Sensing (DMRS), a foundation model-based framework designed for long-tailed remote sensing scene recognition. DMRS introduces two key innovations: (1) multi-low-rank adaptation diversity experts, which achieves balanced classification by specializing different experts for different regions of the class distribution, and (2) a semantic-aware mixing strategy, which incorporates textual semantic information typically unused in traditional classification to enhance perception across diverse remote sensing scenes. Extensive experiments on NWPU-RESISC45 and RSD46-WHU datasets demonstrate the effectiveness of DMRS, achieving 6.7% and 2.0% improvements in overall accuracy, respectively, while significantly enhancing the recognition of tail classes. These results highlight the potential of DMRS in tackling long-tail challenges in remote sensing scene classification. The data and codes used in the study are detailed in: <span><span>https://github.com/wyfhbb/DMRS</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"141 ","pages":"Article 104623"},"PeriodicalIF":7.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225002705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Long-tailed class distributions pose a significant challenge in remote sensing scene recognition, where certain scene categories appear far less frequently than others. However, existing long-tailed learning approaches often overlook the unique spatial hierarchies and contextual semantic relationships inherent in remote sensing imagery, limiting their effectiveness in this domain. To address this, we propose Diversity-Mix Remote Sensing (DMRS), a foundation model-based framework designed for long-tailed remote sensing scene recognition. DMRS introduces two key innovations: (1) multi-low-rank adaptation diversity experts, which achieves balanced classification by specializing different experts for different regions of the class distribution, and (2) a semantic-aware mixing strategy, which incorporates textual semantic information typically unused in traditional classification to enhance perception across diverse remote sensing scenes. Extensive experiments on NWPU-RESISC45 and RSD46-WHU datasets demonstrate the effectiveness of DMRS, achieving 6.7% and 2.0% improvements in overall accuracy, respectively, while significantly enhancing the recognition of tail classes. These results highlight the potential of DMRS in tackling long-tail challenges in remote sensing scene classification. The data and codes used in the study are detailed in: https://github.com/wyfhbb/DMRS.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.