A high-precision PINN method for solving a generalized Burgers–Fisher equation

IF 2.5 3区 工程技术 Q2 MECHANICS
Kai Zheng , Haojie Wang , Haoran Cao , Lixu Yan , Xiaoju Zhang
{"title":"A high-precision PINN method for solving a generalized Burgers–Fisher equation","authors":"Kai Zheng ,&nbsp;Haojie Wang ,&nbsp;Haoran Cao ,&nbsp;Lixu Yan ,&nbsp;Xiaoju Zhang","doi":"10.1016/j.euromechflu.2025.204306","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a high-precision physics informed neural network (HpPINN) method to solve a class of Burgers–Fisher equation. The main difficulty is how to optimize the model to obtain highly accurate prediction solutions. For this purpose, we firstly introduce a new weighting function (WF), and use strategies such as local adaptive activation function (LAAF), training point resampler and combinatorial optimizers to train the model. The experimental results show that the accuracy of the training and test errors can reach <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow></math></span>, and the relative <span><math><mrow><mi>L</mi><mn>2</mn></mrow></math></span> error can achieve <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></math></span>. Compared to previous results, the accuracy of the HpPINN method improves 10 times nearly. Second, we discuss the computational performance of the combinatorial optimizer in different cases. Assume that the maximum number of iterations is fixed at 10<!--> <!-->000 times, this research shows that when the number of iterations <span><math><msub><mrow><mi>i</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> with the Adam optimizer is 500 and the number of iterations <span><math><msub><mrow><mi>i</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> with the L-BFGS optimizer is 9500, the training error and the relative <span><math><mrow><mi>L</mi><mn>2</mn></mrow></math></span> error are smaller. In addition, we also find that when <span><math><msub><mrow><mi>i</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> gradually decreases from 1500 to 500, the corresponding relative <span><math><mrow><mi>L</mi><mn>2</mn></mrow></math></span> error also gradually decreases, then we may infer that the relative <span><math><mrow><mi>L</mi><mn>2</mn></mrow></math></span> error is locally monotonically increasing with respect to <span><math><msub><mrow><mi>i</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>. Finally, we discuss the HpPINN method with WF and without WF respectively. By control group, we verify that the validity of the HpPINN method mainly depends on the newly introduced weighting function.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"114 ","pages":"Article 204306"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754625000871","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a high-precision physics informed neural network (HpPINN) method to solve a class of Burgers–Fisher equation. The main difficulty is how to optimize the model to obtain highly accurate prediction solutions. For this purpose, we firstly introduce a new weighting function (WF), and use strategies such as local adaptive activation function (LAAF), training point resampler and combinatorial optimizers to train the model. The experimental results show that the accuracy of the training and test errors can reach 1010, and the relative L2 error can achieve 106. Compared to previous results, the accuracy of the HpPINN method improves 10 times nearly. Second, we discuss the computational performance of the combinatorial optimizer in different cases. Assume that the maximum number of iterations is fixed at 10 000 times, this research shows that when the number of iterations iA with the Adam optimizer is 500 and the number of iterations iL with the L-BFGS optimizer is 9500, the training error and the relative L2 error are smaller. In addition, we also find that when iA gradually decreases from 1500 to 500, the corresponding relative L2 error also gradually decreases, then we may infer that the relative L2 error is locally monotonically increasing with respect to iA. Finally, we discuss the HpPINN method with WF and without WF respectively. By control group, we verify that the validity of the HpPINN method mainly depends on the newly introduced weighting function.
求解广义Burgers-Fisher方程的高精度PINN方法
提出了一种求解一类Burgers-Fisher方程的高精度物理通知神经网络(HpPINN)方法。主要的难点是如何优化模型以获得高精度的预测解。为此,我们首先引入新的加权函数(WF),并使用局部自适应激活函数(LAAF)、训练点重采样器和组合优化器等策略对模型进行训练。实验结果表明,训练误差和测试误差的准确度可达10−10,相对L2误差可达10−6。与以往的结果相比,HpPINN方法的准确率提高了近10倍。其次,我们讨论了组合优化器在不同情况下的计算性能。假设最大迭代次数固定为10000次,本研究表明,当Adam优化器的迭代次数iA为500次,L-BFGS优化器的迭代次数iL为9500次时,训练误差和相对L2误差较小。此外,我们还发现当iA从1500逐渐减小到500时,相应的相对L2误差也逐渐减小,那么我们可以推断相对L2误差相对于iA局部单调增加。最后,分别讨论了带WF和不带WF的HpPINN方法。通过对照组,我们验证了HpPINN方法的有效性主要取决于新引入的权重函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信