{"title":"Attitude estimation via matrix Fisher distributions on SO(3) using non-unit vector measurements","authors":"Shijie Wang , Haichao Gui , Rui Zhong","doi":"10.1016/j.automatica.2025.112444","DOIUrl":null,"url":null,"abstract":"<div><div>This note presents a novel Bayesian attitude estimator with the matrix Fisher distribution on the special orthogonal group, which can smoothly accommodate both unit and non-unit vector measurements. The posterior attitude distribution is proven to be a matrix Fisher distribution with the assumption that non-unit vector measurement errors follow the isotropic Gaussian distributions and unit vector measurements follow the von-Mises Fisher distributions. Next, a global unscented transformation is proposed to approximate the full likelihood distribution with a matrix Fisher distribution for more generic cases of vector measurement errors following the non-isotropic Gaussian distributions. Following these, a Bayesian attitude estimator with the matrix Fisher distribution is constructed. Numerical examples are then presented. The proposed estimator exhibits advantageous performance compared to the previous Bayesian estimator with the matrix Fisher distributions and the classic multiplicative extended Kalman filter in the case of non-unit vector measurements.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"179 ","pages":"Article 112444"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825003383","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This note presents a novel Bayesian attitude estimator with the matrix Fisher distribution on the special orthogonal group, which can smoothly accommodate both unit and non-unit vector measurements. The posterior attitude distribution is proven to be a matrix Fisher distribution with the assumption that non-unit vector measurement errors follow the isotropic Gaussian distributions and unit vector measurements follow the von-Mises Fisher distributions. Next, a global unscented transformation is proposed to approximate the full likelihood distribution with a matrix Fisher distribution for more generic cases of vector measurement errors following the non-isotropic Gaussian distributions. Following these, a Bayesian attitude estimator with the matrix Fisher distribution is constructed. Numerical examples are then presented. The proposed estimator exhibits advantageous performance compared to the previous Bayesian estimator with the matrix Fisher distributions and the classic multiplicative extended Kalman filter in the case of non-unit vector measurements.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.