Anthropogenic Oxygenated Volatile Organic Compounds Dominate Atmospheric Oxidation Capacity and Ozone Production via Secondary Formation of Formaldehyde in the Urban Atmosphere

Hongtao Qian, Bingye Xu, Zhengning Xu*, Qiaoli Zou, Qianxin Zi, Hanfei Zuo, Fei Zhang, Jing Wei, Xiangyu Pei, WenXin Zhou, Lingling Jin, Xudong Tian, Wenlong Zhao* and Zhibin Wang, 
{"title":"Anthropogenic Oxygenated Volatile Organic Compounds Dominate Atmospheric Oxidation Capacity and Ozone Production via Secondary Formation of Formaldehyde in the Urban Atmosphere","authors":"Hongtao Qian,&nbsp;Bingye Xu,&nbsp;Zhengning Xu*,&nbsp;Qiaoli Zou,&nbsp;Qianxin Zi,&nbsp;Hanfei Zuo,&nbsp;Fei Zhang,&nbsp;Jing Wei,&nbsp;Xiangyu Pei,&nbsp;WenXin Zhou,&nbsp;Lingling Jin,&nbsp;Xudong Tian,&nbsp;Wenlong Zhao* and Zhibin Wang,&nbsp;","doi":"10.1021/acsestair.4c0031710.1021/acsestair.4c00317","DOIUrl":null,"url":null,"abstract":"<p >Oxygenated volatile organic compounds (OVOCs) play an important role in the photochemical formation of ozone (O<sub>3</sub>). Comprehensive measurements and chemical box model analysis conducted in Hangzhou, China reveal that the formation of O<sub>3</sub> is strongly attributed to the increased atmospheric oxidation capacity (AOC). The observed OVOCs contribute 46.5 ± 8.3% to the AOC, especially during the pollution periods, with formaldehyde (HCHO) and acetaldehyde (CH<sub>3</sub>CHO) accounting for 19 ± 3.8% and 13.8 ± 4.1%, respectively. Various OVOCs (especially CH<sub>3</sub>CHO) act as key precursors for the initial production of the crucial radicals. These include the hydroperoxy radical (HO<sub>2</sub>), methyl peroxy radical (CH<sub>3</sub>O<sub>2</sub>), and acetyl peroxy radical (CH<sub>3</sub>CO<sub>3</sub>), accounting for 53.7 ± 5.0%, 13.9 ± 2.5%, and 10.0 ± 2.4% of the daytime O<sub>3</sub> production (P(O<sub>3</sub>)), respectively. HCHO acted as the key accelerator of HO<sub>2</sub> radical production and subsequently speeded up O<sub>3</sub> production. Model simulation and observational evidence reveal that the OVOC initiated secondary channel dominates the HCHO formation. The radical propagation chain of CH<sub>3</sub>CO<sub>3</sub> → CH<sub>3</sub>O<sub>2</sub>→ CH<sub>3</sub>O→ HO<sub>2</sub> accounts for 62.4 ± 6.9% of HCHO production. CH<sub>3</sub>CHO chemistry can account for 14.0% of the production of O<sub>3</sub>, and degradation of secondary HCHO derived from CH<sub>3</sub>CHO accounts for 5.2% of total HO<sub>2</sub> production. These findings underscore the significant effect of OVOCs, particularly CH<sub>3</sub>CHO, on AOC and O<sub>3</sub> production in the urban atmosphere in eastern China. Given the decreasing trend of NO<sub>X</sub> concentration, model simulations under different NO<sub>X</sub> levels further imply that reducing anthropogenic emission sources of OVOCs is a crucial strategy for current O<sub>3</sub> control, and excessive reduction of NO<sub>X</sub> emissions (the daytime average concentration of NO<sub>X</sub> decreases to below ∼ 2 ppb) may affect the effectiveness of reducing VOCs and promote a radical self-reaction.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 6","pages":"1033–1041 1033–1041"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygenated volatile organic compounds (OVOCs) play an important role in the photochemical formation of ozone (O3). Comprehensive measurements and chemical box model analysis conducted in Hangzhou, China reveal that the formation of O3 is strongly attributed to the increased atmospheric oxidation capacity (AOC). The observed OVOCs contribute 46.5 ± 8.3% to the AOC, especially during the pollution periods, with formaldehyde (HCHO) and acetaldehyde (CH3CHO) accounting for 19 ± 3.8% and 13.8 ± 4.1%, respectively. Various OVOCs (especially CH3CHO) act as key precursors for the initial production of the crucial radicals. These include the hydroperoxy radical (HO2), methyl peroxy radical (CH3O2), and acetyl peroxy radical (CH3CO3), accounting for 53.7 ± 5.0%, 13.9 ± 2.5%, and 10.0 ± 2.4% of the daytime O3 production (P(O3)), respectively. HCHO acted as the key accelerator of HO2 radical production and subsequently speeded up O3 production. Model simulation and observational evidence reveal that the OVOC initiated secondary channel dominates the HCHO formation. The radical propagation chain of CH3CO3 → CH3O2→ CH3O→ HO2 accounts for 62.4 ± 6.9% of HCHO production. CH3CHO chemistry can account for 14.0% of the production of O3, and degradation of secondary HCHO derived from CH3CHO accounts for 5.2% of total HO2 production. These findings underscore the significant effect of OVOCs, particularly CH3CHO, on AOC and O3 production in the urban atmosphere in eastern China. Given the decreasing trend of NOX concentration, model simulations under different NOX levels further imply that reducing anthropogenic emission sources of OVOCs is a crucial strategy for current O3 control, and excessive reduction of NOX emissions (the daytime average concentration of NOX decreases to below ∼ 2 ppb) may affect the effectiveness of reducing VOCs and promote a radical self-reaction.

在城市大气中,人为氧化的挥发性有机化合物通过甲醛的二次生成主导了大气氧化能力和臭氧的产生
含氧挥发性有机化合物(OVOCs)在臭氧(O3)的光化学形成中起着重要作用。在中国杭州进行的综合测量和化学箱模型分析表明,O3的形成与大气氧化能力(AOC)的增加密切相关。OVOCs对AOC的贡献率为46.5±8.3%,特别是在污染期,其中甲醛(HCHO)和乙醛(CH3CHO)分别占19±3.8%和13.8±4.1%。各种OVOCs(尤其是CH3CHO)是关键自由基初始生成的关键前体。其中氢过氧自由基(HO2)、甲基过氧自由基(CH3O2)和乙酰过氧自由基(CH3CO3)分别占白天臭氧产量(P(O3))的53.7±5.0%、13.9±2.5%和10.0±2.4%。HCHO是HO2自由基生成的关键加速器,从而加速O3的生成。模式模拟和观测证据表明,OVOC形成的次级通道主导了HCHO形成。CH3CO3→CH3O2→ch30→HO2的自由基传播链占HCHO产量的62.4±6.9%。CH3CHO化学反应可产生14.0%的O3,由CH3CHO产生的次生HCHO降解可产生5.2%的HO2。这些发现强调了中国东部城市大气中OVOCs,特别是CH3CHO对AOC和O3产生的显著影响。考虑到NOX浓度的下降趋势,不同NOX水平下的模型模拟进一步表明,减少OVOCs的人为排放源是当前O3控制的关键策略,而过度减少NOX排放(NOX白天平均浓度降至~ 2 ppb以下)可能会影响减少VOCs的有效性并促进自由基自反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信