Improving Temporal and Spatial Coverage of UK Black Carbon Measurements by Applying a Machine Learning Approach

I. S. Wong*, James D. Allan*, Gary W. Fuller and Anna Font, 
{"title":"Improving Temporal and Spatial Coverage of UK Black Carbon Measurements by Applying a Machine Learning Approach","authors":"I. S. Wong*,&nbsp;James D. Allan*,&nbsp;Gary W. Fuller and Anna Font,&nbsp;","doi":"10.1021/acsestair.4c0030610.1021/acsestair.4c00306","DOIUrl":null,"url":null,"abstract":"<p >The WHO Global Air Quality Guidelines suggest that continuous and systematic monitoring of black carbon (BC) should be implemented due to BC from both transport and residential wood burning posing adverse health effects. Beyond PM<sub>10</sub> and PM<sub>2.5</sub>, BC serves as a strong indicator for the study of health risks related to primary combustion sources. In the UK, only 14 monitoring stations report BC concentrations, contrasting with the extensive network measuring NO<sub><i>x</i></sub>, SO<sub>2</sub>, O<sub>3</sub>, CO, PM<sub>10</sub> and PM<sub>2.5</sub> and meteorological parameters (more than 170 stations across the country). The sparse spatial and temporal coverage of BC data caused by this limitation constrains scientists’ research and policy makers’ decisions. This study applies machine learning algorithms to address this challenge: first, filling gaps in missing BC data at 9 urban and 4 rural background sites in the UK between 2009 and 2020, and then further estimating hourly concentrations of BC at 7 sites without observations (1 urban and 6 rural background sites). The result is a new data set with greater temporal and spatial coverage of BC data, providing a resource for further research on BC impacts such as epidemiological studies on health outcomes. Although the data are specific to the UK, the proposed methodology can potentially be applied to other countries.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 6","pages":"1020–1032 1020–1032"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The WHO Global Air Quality Guidelines suggest that continuous and systematic monitoring of black carbon (BC) should be implemented due to BC from both transport and residential wood burning posing adverse health effects. Beyond PM10 and PM2.5, BC serves as a strong indicator for the study of health risks related to primary combustion sources. In the UK, only 14 monitoring stations report BC concentrations, contrasting with the extensive network measuring NOx, SO2, O3, CO, PM10 and PM2.5 and meteorological parameters (more than 170 stations across the country). The sparse spatial and temporal coverage of BC data caused by this limitation constrains scientists’ research and policy makers’ decisions. This study applies machine learning algorithms to address this challenge: first, filling gaps in missing BC data at 9 urban and 4 rural background sites in the UK between 2009 and 2020, and then further estimating hourly concentrations of BC at 7 sites without observations (1 urban and 6 rural background sites). The result is a new data set with greater temporal and spatial coverage of BC data, providing a resource for further research on BC impacts such as epidemiological studies on health outcomes. Although the data are specific to the UK, the proposed methodology can potentially be applied to other countries.

通过应用机器学习方法改善英国黑碳测量的时空覆盖
世卫组织《全球空气质量指南》建议,应实施持续和系统的黑碳监测,因为运输和住宅木材燃烧产生的黑碳会对健康造成不利影响。除了PM10和PM2.5, BC是研究与主要燃烧源有关的健康风险的有力指标。在英国,只有14个监测站报告BC浓度,与全国170多个监测站测量NOx、SO2、O3、CO、PM10和PM2.5以及气象参数的广泛网络形成鲜明对比。这一限制导致的BC数据时空覆盖的稀疏限制了科学家的研究和决策者的决策。本研究应用机器学习算法来解决这一挑战:首先,填补2009年至2020年间英国9个城市和4个农村背景站点缺失的BC数据的空白,然后进一步估计没有观测的7个站点(1个城市和6个农村背景站点)的每小时BC浓度。其结果是一个新的数据集,具有更大的不列颠哥伦比亚省数据的时空覆盖范围,为进一步研究不列颠哥伦比亚省的影响,如对健康结果的流行病学研究,提供了资源。虽然这些数据是英国特有的,但拟议的方法可能适用于其他国家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信