Qingyang Wang, Yang Yu, Jing Zhuang, Ruijuan Liu, Changgang Sun
{"title":"Demystifying the cGAS-STING pathway: precision regulation in the tumor immune microenvironment","authors":"Qingyang Wang, Yang Yu, Jing Zhuang, Ruijuan Liu, Changgang Sun","doi":"10.1186/s12943-025-02380-0","DOIUrl":null,"url":null,"abstract":"The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway serves as an immune sentinel for cytosolic DNA, recognizing double-stranded DNA (dsDNA) derived from abnormally localized nuclear DNA or mitochondrial DNA (mtDNA), and plays a pivotal role in innate immune responses and tumor immune surveillance. Conventional antitumor therapies induce genomic instability and mitochondrial stress, leading to the release of nuclear DNA and mtDNA into the cytosol, thereby activating the cGAS-STING pathway. This activation triggers the production of type I interferons (IFN-I) and pro-inflammatory cytokines, which reshape the tumor immune microenvironment (TIME). However, the complexity of TIME reveals a “double-edged sword” effect of cGAS-STING signaling: while it activates antitumor immune responses, it also promotes immune escape and metastasis through the regulation of immunosuppressive cells and stromal components. This review comprehensively delineates the differential regulatory mechanisms of the pathway within TIME constituents, highlighting its multifaceted roles in tumor immunity. Furthermore, it reviews recent advances and challenges in targeting the cGAS-STING pathway for cancer immunotherapy, with the aim of advancing cGAS-STING signaling modulation as a key therapeutic strategy to reprogram TIME and overcome immunosuppression in antitumor treatment.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"23 1","pages":""},"PeriodicalIF":33.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02380-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway serves as an immune sentinel for cytosolic DNA, recognizing double-stranded DNA (dsDNA) derived from abnormally localized nuclear DNA or mitochondrial DNA (mtDNA), and plays a pivotal role in innate immune responses and tumor immune surveillance. Conventional antitumor therapies induce genomic instability and mitochondrial stress, leading to the release of nuclear DNA and mtDNA into the cytosol, thereby activating the cGAS-STING pathway. This activation triggers the production of type I interferons (IFN-I) and pro-inflammatory cytokines, which reshape the tumor immune microenvironment (TIME). However, the complexity of TIME reveals a “double-edged sword” effect of cGAS-STING signaling: while it activates antitumor immune responses, it also promotes immune escape and metastasis through the regulation of immunosuppressive cells and stromal components. This review comprehensively delineates the differential regulatory mechanisms of the pathway within TIME constituents, highlighting its multifaceted roles in tumor immunity. Furthermore, it reviews recent advances and challenges in targeting the cGAS-STING pathway for cancer immunotherapy, with the aim of advancing cGAS-STING signaling modulation as a key therapeutic strategy to reprogram TIME and overcome immunosuppression in antitumor treatment.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.